Wheel Signatures on the Neural Ideal

Luis Gomez, Loan Tran, Elijah Washington

University of Arkansas, San Francisco State University, Williams College

July 22, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation

Figure: Place fields for four neurons from Curto 2017

- Neurons fire when reacting to environmental stimuli. This activity has patterns which give rise to receptive fields.
- These fields are represented by a collection of sets, *U* = {*U_i*}ⁿ_{i=1}, contained within a stimulus space.
- It is interesting to explore if these collections are open convex, closed convex, or neither.

Definition

A code on *n* neurons is a subset $C \subseteq 2^{[n]}$, where $[n] = \{1, ..., n\}$. Elements of a code C are codewords, and a maximal codeword is a codeword in C that is maximal with respect to inclusion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A code on *n* neurons is a subset $C \subseteq 2^{[n]}$, where $[n] = \{1, ..., n\}$. Elements of a code C are codewords, and a maximal codeword is a codeword in C that is maximal with respect to inclusion.

Example:

 $\mathcal{C} = \{\textbf{1234}, \textbf{123}, \textbf{234}, \textbf{345}, \textbf{12}, \textbf{13}, \textbf{24}, \textbf{34}, \textbf{35}, \textbf{45}, \textbf{1}, \textbf{2}, \textbf{3}, \textbf{4}, \textbf{5}, \emptyset\}$

24 is a codeword

1234 is a maximal codeword

Realization of a Code

Definition

A realization of a code $C \in \mathbb{R}^d$ is a collection $\mathcal{U} = \{U_i\}_{i=1}^n$ of open subsets of a stimulus space $X \subseteq \mathbb{R}^d$ such that $c \in C$ if and only if

$$\left(\bigcap_{i\in c}U_i\right)\setminus\left(\bigcup_{j\in [n]\setminus c}U_j\right)\neq\emptyset.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Realization of a Code

Definition

A realization of a code $C \in \mathbb{R}^d$ is a collection $\mathcal{U} = \{U_i\}_{i=1}^n$ of open subsets of a stimulus space $X \subseteq \mathbb{R}^d$ such that $c \in C$ if and only if

$$\left(\bigcap_{i\in c} U_i\right)\setminus \left(\bigcup_{j\in [n]\setminus c} U_j\right)\neq \emptyset.$$

Example:

 $\mathcal{C} = \{\textbf{1234}, \textbf{123}, \textbf{234}, \textbf{345}, \textbf{12}, \textbf{13}, \textbf{24}, \textbf{34}, \textbf{35}, \textbf{45}, \textbf{1}, \textbf{2}, \textbf{3}, \textbf{4}, \textbf{5}, \emptyset\}$

codeword {1, 2, 3, 4, 0} = {1234}

・ロト・日本・日本・日本・日本

Simplicial Complex

Definition

The simplicial complex of a code C on n neurons is:

$$\Delta(\mathcal{C}) := \{ \sigma \in 2^{[n]} \mid \sigma \subseteq c \text{ for some } c \in \mathcal{C} \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Simplicial Complex

Definition

The simplicial complex of a code C on n neurons is:

$$\Delta(\mathcal{C}) := \{ \sigma \in 2^{[n]} \mid \sigma \subseteq c \text{ for some } c \in \mathcal{C} \}$$

Example:

 $C = \{1234, 123, 234, 345, 12, 13, 24, 34, 35, 45, 1, 2, 3, 4, 5, \emptyset\}$ Figure: The simplicial complex $\Delta(C)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Trunks

Definition

Given a code C on n neurons and subset $\sigma \subseteq [n]$, the **trunk** of σ in C, denoted by $\mathsf{Tk}_{\mathcal{C}}(\sigma)$, is the set of all codewords containing σ ; denoted as

$$\mathsf{Tk}_{\mathcal{C}}(\sigma) := \{ c \in \mathcal{C} \mid \sigma \subseteq c \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Trunks

Definition

Given a code C on n neurons and subset $\sigma \subseteq [n]$, the **trunk** of σ in C, denoted by $\mathsf{Tk}_{\mathcal{C}}(\sigma)$, is the set of all codewords containing σ ; denoted as

$$\mathsf{Tk}_{\mathcal{C}}(\sigma) := \{ c \in \mathcal{C} \mid \sigma \subseteq c \}$$

Example:

 $\mathcal{C} = \{\textbf{1234}, \textbf{123}, \textbf{234}, \textbf{345}, \textbf{12}, \textbf{13}, \textbf{24}, \textbf{34}, \textbf{35}, \textbf{45}, \textbf{1}, \textbf{2}, \textbf{3}, \textbf{4}, \textbf{5}, \emptyset\}$

Figure: The trunk of 1 Note: This containment graph doesn't include 1, 2, 3, 4, or 5

Definition

A **pseudo-monomial** has the form $f = \prod_{i \in \sigma} x_i \prod_{j \in \tau} (1 - x_j)$.

The **neural ideal** is $J_{\mathcal{C}} = \langle \{\rho_v \mid v \notin \mathcal{C}\} \rangle$, where $\rho_v = \prod_{i=1}^n (1 - v_i - x_i)$ are the characteristic pseudo-monomials of codewords that are not in \mathcal{C} .

Definition

The **canonical form** of the neural ideal, denoted as $CF(J_C)$, is the set of all minimal pseudo-monomials of J_C .

Example: The canonical form of $J_{\mathcal{C}}$ where

 $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}:$

$$CF(J_{\mathcal{C}}) = \{(1 - x_2)(1 - x_3)(1 - x_4)(1 - x_5)(1 - x_6), \\ (1 - x_1)(1 - x_4)(1 - x_5)(1 - x_6), \\ x_1(1 - x_3)x_5, \\ x_4x_5(1 - x_6), \\ x_1x_4x_5, \\ x_1(1 - x_2)x_6, \\ x_4(1 - x_5)x_6, \\ x_1x_4x_6, \\ x_2x_4x_6, \\ (1 - x_4)x_5x_6, \\ x_1x_5x_6, \\ (1 - x_1)x_2, \\ (1 - x_1)x_3, \\ x_3x_4, \\ x_2x_5, \\ x_3x_6\} \}$$

1. Type 1 Relation:

The relation $\prod_{i \in \sigma} x_i$ corresponds to $\bigcap_{i \in \sigma} U_i = \emptyset$.

2. Type 2 Relation:

The relation $\prod_{i \in \sigma} x_i \prod_{i \in \tau} (1 - x_i)$ corresponds to $\bigcap_{i \in \sigma} U_i \subseteq \bigcup_{i \in \tau} U_i$.

 $U_1 \cap U_2 \cap U_3 = \emptyset$ corresponds to a Type 1 relation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Let C be a code. The ideal generated by the Type 1 relations of $CF(J_C)$ is the **Stanley-Reisner ideal** of $\Delta(C)$.

$$I_{\Delta} \stackrel{def}{=} \langle x_{\sigma} | \sigma \not\in \Delta(\mathcal{C}) \rangle$$

Note that $I_{\Delta} \in CF(J_{\mathcal{C}})$. To show an example, recall

$$CF(J_{\mathcal{C}}) = \{(1-x_2)(1-x_3)(1-x_4)(1-x_5)(1-x_6), \\ (1-x_1)(1-x_4)(1-x_5)(1-x_6), \\ x_1(1-x_2)(1-x_3)x_5, \\ x_4x_5(1-x_6), \\ x_1x_4x_5, \\ x_1(1-x_2)x_6, \\ x_1x_4x_6, \\ x_2x_4x_6, \\ (1-x_4)x_5x_6, \\ x_1x_5x_6, \\ (1-x_1)x_2, \\ (1-x_1)x_3, \\ x_3x_4, \\ x_2x_5, \\ x_3x_6 \}$$

And so, $I_{\Delta} = \langle x_1 x_4 x_5, x_1 x_4 x_6, x_2 x_4 x_6, x_3 x_4, x_2 x_5, x_3 x_6 \rangle$

Wheels

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Figure: Intuition behind a wheel from [4]

Why do we care about wheels?

- Wheels are markers for non-convexity.
- It is a useful combinatorial tool to test for open convexity on neural codes.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Classifications of Wheels

Example of an algebraic signature:

Curto et al. (2019)

If a code C contains $x_{\sigma}(1-x_i)(1-x_j)$ and $x_{\sigma}x_ix_j$ in $CF(J_C)$, then C is guaranteed to be non-convex.

Example of an algebraic signature:

Curto et al. (2019)

If a code C contains $x_{\sigma}(1 - x_i)(1 - x_j)$ and $x_{\sigma}x_ix_j$ in $CF(J_C)$, then C is guaranteed to be non-convex.

Goal: We wish to find algebraic signatures for wheels within the neural ideal, $J_{\mathcal{C}}$.

Translation Process

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Definition

A tuple $\mathcal{W} = (\sigma_1, \sigma_2, \sigma_3, \tau) \in (\Delta(\mathcal{C}))^4$ is a **partial wheel** of a neural code \mathcal{C} if it satisfies the following conditions:

P(1)
$$\sigma_1 \cup \sigma_2 \cup \sigma_3 \in \Delta(\mathcal{C})$$
, and
 $Tk_{\mathcal{C}}(\sigma_j \cup \sigma_k) = Tk_{\mathcal{C}}(\sigma_1 \cup \sigma_2 \cup \sigma_3)$ for every $1 \le j < k \le 3$,
P(2) $\sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \tau \notin \Delta(\mathcal{C})$, and
P(3) $\sigma_j \cup \tau \in \Delta(\mathcal{C})$ for $j \in \{1, 2, 3\}$.

Example: Let $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$. We show that $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau)$ is a partial wheel of C

Partial Wheel Condition 1

Recall $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$ and $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau)$.

 $\begin{array}{l} \mathsf{P}(\mathsf{i}): \ \sigma_1 \cup \sigma_2 \cup \sigma_3 \in \Delta(\mathcal{C}), \ \mathsf{and} \\ Tk_{\mathcal{C}}(\sigma_j \cup \sigma_k) = Tk_{\mathcal{C}}(\sigma_1 \cup \sigma_2 \cup \sigma_3) \ \mathsf{for \ every} \ 1 \leq j < k \leq 3 \end{array}$

•
$$\sigma_1 \cup \sigma_2 \cup \sigma_3 = 456 \in \Delta(\mathcal{C}).$$

$$\mathsf{Tk}(\sigma_1 \cup \sigma_2) = \mathsf{Tk}(\sigma_1 \cup \sigma_3) = \mathsf{Tk}(\sigma_2 \cup \sigma_3) = \mathsf{Tk}(\sigma_1 \cup \sigma_2 \cup \sigma_3) = \mathsf{456}.$$

Translation for Condition 1

Recall
$$(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau)$$
.
Theorem (LG, LT, EW 2022)
(a) $\prod_{i \in \sigma_1 \cup \sigma_2 \cup \sigma_3} x_i \notin J_C$
(b) $\prod_{a \in \sigma_j \cup \sigma_k} x_a \prod_{i \in \sigma_\ell \setminus (\sigma_j \cup \sigma_k)} (1 - x_i) \in J_C$, for distinct $j, k, \ell \in \{1, 2, 3\}$.

$$CF(J_{\mathcal{C}}) = \{(1-x_2)(1-x_3)(1-x_4)(1-x_5)(1-x_6), \\ (1-x_1)(1-x_4)(1-x_5)(1-x_6), \\ x_1(1-x_3)x_5, \\ x_4x_5(1-x_6), \\ x_1x_4x_5, \\ x_1(1-x_2)x_6, \\ x_4(1-x_5)x_6, \\ x_1x_4x_6, \\ x_2x_4x_6, \\ (1-x_4)x_5x_6, \\ x_1x_5x_6, \\ (1-x_1)x_2, \\ (1-x_1)x_3, \\ x_3x_4, \\ x_2x_5, \\ x_3x_6\}$$

We see that $x_4x_5x_6 \notin J_C$ by (a) and $x_4x_5(1-x_6)$, $(1-x_4)x_5x_6$, $x_4(1-x_5)x_6 \in J_C$ by (b).

Partial Wheel Condition 2

Recall $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$ and $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau)$.

 $\mathsf{P}(\mathsf{ii}): \ \sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \tau \not\in \Delta(\mathcal{C})$

 $\blacktriangleright \ \sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \tau = 1456 \notin \Delta(\mathcal{C}).$

Figure: The simplicial complex $\Delta(\mathcal{C})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Translation for Condition 2

Recall $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$ and $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau)$.

Theorem (LG, LT, EW 2022)

$$P(ii): \prod_{i \in (\sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \tau)} x_i \in J_C$$

$$CF(J_{\mathcal{C}}) = \{(1-x_2)(1-x_3)(1-x_4)(1-x_5)(1-x_6), \\ (1-x_1)(1-x_4)(1-x_5)(1-x_6), \\ x_1(1-x_3)x_5, \\ x_4x_5(1-x_6), \\ x_1x_4x_5, \\ x_1(1-x_2)x_6, \\ x_1x_4x_6, \\ x_2x_4x_6, \\ (1-x_4)x_5x_6, \\ x_1x_5x_6, \\ (1-x_1)x_2, \\ (1-x_1)x_3, \\ x_3x_4, \\ x_2x_5, \\ x_3x_6 \}$$

We see that $x_1x_4x_5x_6 \in J_C$.

Partial Wheel Condition 3

Recall $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$ and $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau)$.

P(iii): $\sigma_j \cup \tau \in \Delta(\mathcal{C})$ for $j \in \{1, 2, 3\}$

•
$$\sigma_1 \cup \tau = 15 \in \Delta(\mathcal{C}).$$

$$\bullet \ \sigma_2 \cup \tau = 14 \in \Delta(\mathcal{C}).$$

 $\blacktriangleright \ \sigma_3 \cup \tau = 16 \in \Delta(\mathcal{C}).$

Translation for Condition 3

Recall $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$ and $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau)$.

Theorem (LG, LT, EW 2022)

$$P(iii): \prod_{i \in (\sigma_j \cup \tau)} x_i \notin J_C$$

where $j \in \{1, 2, 3\}$

 $CF(J_{\mathcal{C}}) = \{(1-x_2)(1-x_3)(1-x_4)(1-x_5)(1-x_6), \\ (1-x_1)(1-x_4)(1-x_5)(1-x_6), \\ x_1(1-x_3)x_5, \\ x_4x_5(1-x_6), \\ x_1x_4x_5, \\ x_1(1-x_2)x_6, \\ x_4x_6, \\ x_2x_4x_6, \\ (1-x_4)x_5x_6, \\ x_1x_5x_6, \\ (1-x_1)x_2, \\ (1-x_1)x_3, \\ x_3x_4, \\ x_2x_5, \\ x_3x_6, \\ x_1x_5x_6, \\ (1-x_1)x_2, \\ (1-x_1)x_3, \\ x_3x_4, \\ x_2x_5, \\ x_3x_6, \\ x_1x_5x_6, \\ (1-x_1)x_2, \\ (1-x_1)x_3, \\ x_3x_4, \\ x_2x_5, \\ x_3x_6, \\ x_1x_5x_6, \\ (1-x_1)x_2, \\ (1-x_1)x_3, \\ x_3x_4, \\ x_2x_5, \\ x_3x_6, \\ x_1x_5x_6, \\ x_1x_5x_6, \\ (1-x_1)x_2, \\ (1-x_1)x_3, \\ x_1x_5x_6, \\ x_1x_5x$

We see that $x_1x_5 \notin J_C$, $x_1x_4 \notin J_C$, and $x_1x_6 \notin J_C$.

Definition

The **codeword-containment graph** of a neural code C is the (undirected) graph with the vertex set consisting of all codewords of $C \setminus \{\emptyset\}$ and edge set $\{\sigma, \tau \mid \sigma \subset \tau \text{ or } \sigma \supset \tau\}$.

E.g. let $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6\}$. The corresponding codeword-containment graph is

Question

If a neural code has *no* wheel, then is its codeword-containment graph **planar**?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Question

If a neural code has *no* wheel, then is its codeword-containment graph **planar**?

Counter Example

The neural code $C = \{12, 13, 24, 156, 2356, 3456, 4, 356, 3, 1, 56, 2, \emptyset\}$ does not contain a wheel, but its codeword-containment graph is non-planar.

(日) (四) (日) (日) (日)

- We hope to fully translate all wheel and combinatorial wheel conditions.
- We hope to further explore codeword-containment graphs and how their planarity relates to wheels.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

References

Patrick Chan, Katherine Johnston, Joseph Lent, Alexander Ruys de Perez, and Anne Shiu.

Nondegenerate neural codes and obstructions to closed-convexity, arXiv.2011.04565, 2020.

 Carina Curto, Elizabeth Gross, Jack Jeffries, Katherine Morrison, Zvi Rosen, Anne Shiu, and Nora Youngs.
 Algebraic signatures of convex and non-convex codes.
 Journal of pure and applied algebra, 223(9):3919–3940, 2019.

Carina Curto, Vladimir Itskov, Alan Veliz-Cuba, and Nora Youngs. The neural ring: An algebraic tool for analyzing the intrinsic structure of neural codes.

The Bulletin of Mathematical Biophysics, 75(9):1571–1611, September 2013.

Laura Matusevich, Alexander Ruys de Perez, and Anne Shiu.

Wheels: A new criterion for non-convexity of neural codes, arXiv.2108.0499, 2021.

Acknowledgements

- (i) Dr. Anne Shiu
- (ii) Natasha Crepeau
- (iii) Dr. Federico Ardila
- (iv) Mathematical Sciences Research Institute

