Wheel Signatures on the Neural Ideal

Luis Gomez, Loan Tran, Elijah Washington

University of Arkansas, San Francisco State University, Williams College

July 22, 2022

KORKARYKERKER OQO

Motivation

Figure: Place fields for four neurons from Curto 2017

- ▶ Neurons fire when reacting to environmental stimuli. This activity has patterns which give rise to receptive fields.
- \blacktriangleright These fields are represented by a collection of sets, $\mathcal{U} = \{U_i\}_{i=1}^n$, contained within a stimulus space.
- \blacktriangleright It is interesting to explore if these collections are open convex, closed convex, or neither.

KORKAR KERKER SAGA

Definition

A **code** on *n* neurons is a subset $\mathcal{C} \subseteq 2^{[n]}$, where $[n] = \{1,...,n\}.$ Elements of a code C are codewords, and a maximal codeword is a codeword in $\mathcal C$ that is maximal with respect to inclusion.

KORKARYKERKER OQO

Definition

A **code** on *n* neurons is a subset $\mathcal{C} \subseteq 2^{[n]}$, where $[n] = \{1,...,n\}.$ Elements of a code $\mathcal C$ are **codewords**, and a **maximal codeword** is a codeword in $\mathcal C$ that is maximal with respect to inclusion.

Example:

 $C = \{1234, 123, 234, 345, 12, 13, 24, 34, 35, 45, 1, 2, 3, 4, 5, \emptyset\}$

KORKAR KERKER ST VOOR

 \triangleright 24 is a codeword

 \blacktriangleright 1234 is a maximal codeword

Realization of a Code

Definition

A **realization of a code** $\mathcal{C} \in \mathbb{R}^d$ is a collection $\mathcal{U} = \{U_i\}_{i=1}^n$ of open subsets of a $\textsf{stimulus~space} \; X \subseteq \mathbb{R}^d$ such that $c \in \mathcal{C}$ if and only if \bigcap

$$
\left(\bigcap_{i\in c}U_i\right)\setminus\left(\bigcup_{j\in[n]\setminus c}U_j\right)\neq\emptyset.
$$

KORKARYKERKER OQO

Realization of a Code

Definition

A **realization of a code** $\mathcal{C} \in \mathbb{R}^d$ is a collection $\mathcal{U} = \{U_i\}_{i=1}^n$ of open subsets of a $\textsf{stimulus~space} \; X \subseteq \mathbb{R}^d$ such that $c \in \mathcal{C}$ if and only if \bigcap

$$
\left(\bigcap_{i\in c}U_i\right)\setminus\left(\bigcup_{j\in[n]\setminus c}U_j\right)\neq\emptyset.
$$

Example:

 $C = \{1234, 123, 234, 345, 12, 13, 24, 34, 35, 45, 1, 2, 3, 4, 5, \emptyset\}$

codeword $\{1, 2, 3, 4, 0\} = \{1234\}$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q O

Simplicial Complex

Definition

The simplicial complex of a code C on n neurons is:

$$
\Delta(\mathcal{C}):=\{\sigma\in 2^{[n]}\mid \sigma\subseteq c\,\,\text{for some}\,\, c\in\mathcal{C}\}
$$

Simplicial Complex

Definition

The simplicial complex of a code C on *n* neurons is:

$$
\Delta(\mathcal{C}) := \{ \sigma \in 2^{[n]} \mid \sigma \subseteq c \text{ for some } c \in \mathcal{C} \}
$$

Example:

 $C = \{1234, 123, 234, 345, 12, 13, 24, 34, 35, 45, 1, 2, 3, 4, 5, \emptyset\}$ Figure: The simplicial complex $\Delta(C)$

Trunks

Definition

Given a code C on n neurons and subset $\sigma \subseteq [n]$, the **trunk** of σ in C, denoted by Tk $c(\sigma)$, is the set of all codewords containing σ ; denoted as

$$
\mathsf{Tk}_\mathcal{C}(\sigma) := \{c \in \mathcal{C} \mid \sigma \subseteq c\}
$$

KORKARYKERKER OQO

Trunks

Definition

Given a code C on n neurons and subset $\sigma \subseteq [n]$, the **trunk** of σ in C, denoted by Tk $c(\sigma)$, is the set of all codewords containing σ ; denoted as

$$
\mathsf{Tk}_\mathcal{C}(\sigma) := \{c \in \mathcal{C} \mid \sigma \subseteq c\}
$$

Example:

 $C = \{1234, 123, 234, 345, 12, 13, 24, 34, 35, 45, 1, 2, 3, 4, 5, \emptyset\}$

Figure: The trunk of 1 Note: This containment graph doesn't incl[ude](#page-8-0) [1](#page-10-0), [2](#page-7-0)[,](#page-8-0) [3](#page-9-0), [4](#page-10-0)[, o](#page-0-0)[r 5](#page-33-0)
 \longleftrightarrow 3 \longleftrightarrow

Definition

A **pseudo-monomial** has the form $f = \prod_{i \in \sigma} x_i \prod_{j \in \tau} (1-x_j).$

The **neural ideal** is $J_{\mathcal{C}} = \langle {\rho_{v} | v \notin \mathcal{C}} \rangle$, where $\rho_{\mathsf{v}} = \prod_{i=1}^n (1-v_i-x_i)$ are the characteristic pseudo-monomials of codewords that are not in C.

Definition

The **canonical form** of the neural ideal, denoted as $CF(J_{\mathcal{C}})$, is the set of all minimal pseudo-monomials of J_C .

KORKAR KERKER ST VOOR

Example: The canonical form of $J_{\mathcal{C}}$ where

 $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$:

$$
CF(J_{\mathcal{C}}) = \{ (1 - x_2)(1 - x_3)(1 - x_4)(1 - x_5)(1 - x_6), (1 - x_1)(1 - x_4)(1 - x_5)(1 - x_6), x_1(1 - x_2)(1 - x_3), x_1(1 - x_2)x_4, x_1(1 - x_3)x_5, x_4x_5(1 - x_6), x_1x_4x_5, x_1(1 - x_2)x_6, x_4(1 - x_5)x_6, x_1x_4x_6, x_2x_4x_6, (1 - x_4)x_5x_6, x_1x_5x_6, (1 - x_1)x_2, (1 - x_1)x_3, x_3x_4, x_2x_5, x_3x_6 \}
$$

KID KØD KED KED E 1990

1. Type 1 Relation:

The relation $\prod_{i\in\sigma}x_i$ corresponds to $\bigcap_{i\in\sigma}U_i=\emptyset$.

2. Type 2 Relation:

The relation $\prod_{i\in \sigma} x_i\prod_{i\in \tau}(1-x_i)$ corresponds to $\bigcap_{i\in\sigma}U_i\subseteq\cup_{i\in\tau}U_i$.

KORK EXTERNE PROVIDE

 $U_1 \cap U_2 \cap U_3 = \emptyset$ corresponds to a Type 1 relation.

Definition

Let C be a code. The ideal generated by the Type 1 relations of $CF(J_{\mathcal{C}})$ is the Stanley-Reisner ideal of $\Delta(\mathcal{C})$.

$$
I_{\Delta} \stackrel{\text{def}}{=} \langle x_{\sigma} | \sigma \notin \Delta(\mathcal{C}) \rangle
$$

Note that $I_{\Lambda} \in CF(J_{\mathcal{C}})$. To show an example, recall

$$
CF(J_{\mathcal{C}}) = \{ (1 - x_2)(1 - x_3)(1 - x_4)(1 - x_5)(1 - x_6),(1 - x_1)(1 - x_4)(1 - x_5)(1 - x_6), x_1(1 - x_2)(1 - x_3), x_1(1 - x_2)x_4,x_1(1 - x_3)x_5, x_4x_5(1 - x_6), x_1x_4x_5, x_1(1 - x_2)x_6, x_4(1 - x_5)x_6,x_1x_4x_6, x_2x_4x_6, (1 - x_4)x_5x_6, x_1x_5x_6, (1 - x_1)x_2, (1 - x_1)x_3, x_3x_4, x_2x_5, x_3x_6 \}
$$

And so, $I_{\Delta} = \langle x_1x_4x_5, x_1x_4x_6, x_2x_4x_6, x_3x_4, x_2x_5, x_3x_6 \rangle$

Wheels

K ロ K K d K K B K K B K X B K Y Q Q Q

Figure: Intuition behind a wheel from [\[4\]](#page-32-0)

Why do we care about wheels?

- ▶ Wheels are markers for non-convexity.
- ▶ It is a useful combinatorial tool to test for open convexity on neural codes.

Classifications of Wheels

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Example of an algebraic signature:

Curto et al. (2019)

If a code $\mathcal C$ contains ${\sf x}_\sigma(1-{\sf x}_i)(1-{\sf x}_j)$ and ${\sf x}_\sigma{\sf x}_i{\sf x}_j$ in ${\sf CF}(J_{\mathcal C}),$ then C is guaranteed to be non-convex.

Example of an algebraic signature:

Curto et al. (2019)

If a code $\mathcal C$ contains ${\sf x}_\sigma(1-{\sf x}_i)(1-{\sf x}_j)$ and ${\sf x}_\sigma{\sf x}_i{\sf x}_j$ in ${\sf CF}(J_{\mathcal C}),$ then $\mathcal C$ is guaranteed to be non-convex.

Goal: We wish to find algebraic signatures for wheels within the neural ideal, $J_{\mathcal{C}}$.

KELK KØLK VELKEN EL 1990

Translation Process

Definition

A tuple $\mathcal{W} = (\sigma_1, \sigma_2, \sigma_3, \tau) \in (\Delta(\mathcal{C}))^4$ is a **partial wheel** of a neural code C if it satisfies the following conditions:

\n- $$
P(1) \ \sigma_1 \cup \sigma_2 \cup \sigma_3 \in \Delta(\mathcal{C})
$$
, and
\n- $Tk_{\mathcal{C}}(\sigma_j \cup \sigma_k) = Tk_{\mathcal{C}}(\sigma_1 \cup \sigma_2 \cup \sigma_3)$ for every $1 \leq j < k \leq 3$,
\n- $P(2) \ \sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \tau \notin \Delta(\mathcal{C})$, and
\n- $P(3) \ \sigma_j \cup \tau \in \Delta(\mathcal{C})$ for $j \in \{1, 2, 3\}$.
\n

Example: Let $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$. We show that $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau)$ is a partial wheel of C

KORKAR KERKER SAGA

Partial Wheel Condition 1

Recall $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$ and $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau).$

P(i): $\sigma_1 \cup \sigma_2 \cup \sigma_3 \in \Delta(C)$, and $Tk_{\mathcal{C}}(\sigma_i \cup \sigma_k) = Tk_{\mathcal{C}}(\sigma_1 \cup \sigma_2 \cup \sigma_3)$ for every $1 \leq j \leq k \leq 3$

$$
\blacktriangleright \sigma_1 \cup \sigma_2 \cup \sigma_3 = 456 \in \Delta(\mathcal{C}).
$$

$$
\blacktriangleright \text{ Tk}(\sigma_1 \cup \sigma_2) = \text{Tk}(\sigma_1 \cup \sigma_3) = \text{Tk}(\sigma_2 \cup \sigma_3) = \text{Tk}(\sigma_1 \cup \sigma_2 \cup \sigma_3) = 456.
$$

Translation for Condition 1

Recall (5, 4, 6, 1) =
$$
(\sigma_1, \sigma_2, \sigma_3, \tau)
$$
.
\nTheorem (LG, LT, EW 2022)
\n(a)
$$
\prod_{i \in \sigma_1 \cup \sigma_2 \cup \sigma_3} x_i \notin J_c
$$
\n(b)
$$
\prod_{a \in \sigma_j \cup \sigma_k} x_a \prod_{i \in \sigma_\ell \setminus (\sigma_j \cup \sigma_k)} (1 - x_i) \in J_c
$$
, for distinct $j, k, \ell \in \{1, 2, 3\}$.

$$
CF(J_{\mathcal{C}}) = \{ (1 - x_2)(1 - x_3)(1 - x_4)(1 - x_5)(1 - x_6),(1 - x_1)(1 - x_4)(1 - x_5)(1 - x_6), x_1(1 - x_2)(1 - x_3), x_1(1 - x_2)x_4,x_1(1 - x_3)x_5, x_4x_5(1 - x_6), x_1x_4x_5, x_1(1 - x_2)x_6, x_4(1 - x_5)x_6,x_1x_4x_6, x_2x_4x_6, (1 - x_4)x_5x_6, x_1x_5x_6, (1 - x_1)x_2, (1 - x_1)x_3, x_3x_4, x_2x_5, x_3x_6 \}
$$

We see that $x_4x_5x_6 \notin J_{\mathcal{C}}$ by (a) and $x_4x_5(1-x_6)$, $(1-x_4)x_5x_6$, $x_4(1-x_5)x_6 \in J_c$ by (b). KID KA KERKER KID KO

Partial Wheel Condition 2

Recall $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$ and $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau).$

P(ii): $\sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \tau \notin Δ(C)$

$$
\blacktriangleright \sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \tau = 1456 \notin \Delta(\mathcal{C}).
$$

Figure: The simplicial complex $\Delta(C)$

KORKARYKERKER POLO

Translation for Condition 2

Recall $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$ and $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau).$

Theorem (LG, LT, EW 2022)

$$
P(ii): \prod_{i \in (\sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \tau)} x_i \in J_{\mathcal{C}}
$$

$$
CF(J_{\mathcal{C}}) = \{ (1 - x_2)(1 - x_3)(1 - x_4)(1 - x_5)(1 - x_6),(1 - x_1)(1 - x_4)(1 - x_5)(1 - x_6), x_1(1 - x_2)(1 - x_3), x_1(1 - x_2)x_4,x_1(1 - x_3)x_5, x_4x_5(1 - x_6), x_1x_4x_5, x_1(1 - x_2)x_6, x_4(1 - x_5)x_6,x_1x_4x_6, x_2x_4x_6, (1 - x_4)x_5x_6, x_1x_5x_6, (1 - x_1)x_2, (1 - x_1)x_3, x_3x_4, x_2x_5, x_3x_6 \}
$$

We see that $x_1x_4x_5x_6 \in J_{\mathcal{C}}$.

Partial Wheel Condition 3

Recall $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$ and $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau).$

P(iii): $\sigma_i \cup \tau \in \Delta(C)$ for $j \in \{1,2,3\}$

$$
\blacktriangleright \sigma_1 \cup \tau = 15 \in \Delta(\mathcal{C}).
$$

$$
\blacktriangleright \sigma_2 \cup \tau = 14 \in \Delta(\mathcal{C}).
$$

 \blacktriangleright $\sigma_3 \cup \tau = 16 \in \Delta(\mathcal{C}).$

KORKARYKERKER POLO

Translation for Condition 3

Recall $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6, \emptyset\}$ and $(5, 4, 6, 1) = (\sigma_1, \sigma_2, \sigma_3, \tau).$

Theorem (LG, LT, EW 2022)

$$
P(iii): \prod_{i \in (\sigma_j \cup \tau)} x_i \notin J_C
$$

where $j \in \{1, 2, 3\}$

 $CF(J_C) = \{(1-x_2)(1-x_3)(1-x_4)(1-x_5)(1-x_6)\}.$ $(1 - x_1)(1 - x_4)(1 - x_5)(1 - x_6)$, $x_1(1 - x_2)(1 - x_3)$, $x_1(1 - x_2)x_4$, $x_1(1-x_3)x_5, x_4x_5(1-x_6), x_1x_4x_5, x_1(1-x_2)x_6, x_4(1-x_5)x_6,$ $x_1x_4x_6, x_2x_4x_6, (1 - x_4)x_5x_6, x_1x_5x_6, (1 - x_1)x_2, (1 - x_1)x_3, x_3x_4, x_2x_5, x_3x_6$

We see that $x_1x_5 \notin J_c$, $x_1x_4 \notin J_c$, and $x_1x_6 \notin J_c$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Definition

The **codeword-containment graph** of a neural code C is the (undirected) graph with the vertex set consisting of all codewords of $C \setminus \{\emptyset\}$ and edge set $\{\sigma, \tau \mid \sigma \subset \tau \text{ or } \sigma \supset \tau\}.$

E.g. let $C = \{123, 124, 126, 135, 456, 12, 13, 4, 5, 6\}$. The corresponding codeword-containment graph is

Question

If a neural code has no wheel, then is its codeword-containment graph planar?

Question

If a neural code has no wheel, then is its codeword-containment graph planar?

Counter Example

The neural code $C = \{12, 13, 24, 156, 2356, 3456, 4, 356, 3, 1, 56, 2, \emptyset\}$ does not contain a wheel, but its codeword-containment graph is non-planar.

 2990

- \triangleright We hope to fully translate all wheel and combinatorial wheel conditions.
- ▶ We hope to further explore codeword-containment graphs and how their planarity relates to wheels.

References

Patrick Chan, Katherine Johnston, Joseph Lent, Alexander Ruys de Perez, and Anne Shiu.

Nondegenerate neural codes and obstructions to closed-convexity, arXiv.2011.04565, 2020.

Carina Curto, Elizabeth Gross, Jack Jeffries, Katherine Morrison, Zvi Rosen, Anne Shiu, and Nora Youngs.

Algebraic signatures of convex and non-convex codes.

Journal of pure and applied algebra, 223(9):3919–3940, 2019.

E

Carina Curto, Vladimir Itskov, Alan Veliz-Cuba, and Nora Youngs.

The neural ring: An algebraic tool for analyzing the intrinsic structure of neural codes.

The Bulletin of Mathematical Biophysics, 75(9):1571–1611, September 2013.

Laura Matusevich, Alexander Ruys de Perez, and Anne Shiu.

Wheels: A new criterion for non-convexity of neural codes, arXiv.2108.0499, 2021.

Acknowledgements

- (i) Dr. Anne Shiu
- (ii) Natasha Crepeau
- (iii) Dr. Federico Ardila
- (iv) Mathematical Sciences Research Institute

KORKARYKERKER POLO