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Background

What are Linear Compartmental Models? Why are they useful?

y Example: Linear 2-
Compartment Model

Motivation: biological models

Measured drug
concentration

@ &y ==y + kgy)xy + kypxp + 1y

¥2 = kay %y = (koz + ki2)¥2
Loss from blood |Luss from organ ‘ y=x

Figure: Credit: Nicolette Meshkat
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Defining Our Models

Definition 1

A directed-cycle model is a directed graph G that is described by a set of
inputs, outputs, and leaks, denoted (G, In, Out, Leak), such that
G={(v1,...,vn),(e1,...,en)}, where & = (v, vi41) for i < n, and

en = (Va, v1).

Each edge j — i is denoted by a parameter kj. The leaks are denoted by ko;
where j is the compartment corresponding to that leak.

But
k21 k02l k32
In

\ Leak @
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Defining Identifiability

Definition 2

A mathematical model is identifiable if its parameters, kj; can be recovered
from data.

Proposition 1 (Meshkat, Sullivant, Eisenberg, 2015)

A linear compartmental model (G, In, Out, Leak), with G = (V, E), is generically
locally identifiable if and only if the rank of the Jacobian matrix of its
coefficient map c , when evaluated at a generic point, is equal to |E| + |Leak]|.

Question

Can we determine identifiability based on the structure of the model?
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Coefficient Map Formula

Proposition 2 (Gerberding, Obatake, Shiu, 2020)

Assume n > 3. Let M be an n-compartment cycle model with In = {1},
Out = {p} (for some 1 < p < n), and Leak = {i1, iz, ..., it} # 0. Then the
coefficient map ¢ : R™t — R2"=PL js given by

(k21, /(327 000 k17n, /(07,'17 ko7,'2, coog ko,,'t) —>

(e1,€2,...,€n—1,€n — H Kit1,i, K, €1K, . . . €n_pk)

=1
where k := [[2, kii—1, and e and € denote the jt elementary symmertric
polynomial on the sets E = {ket1,0 | £ ¢ Leak} U {ket1,0+ koo | £ € Leak}
and E* = {kep1e | p+1<0<n, £ ¢ Leak} U {ket1e+ koo | p+1<£t<
n, £ € Leak}, respectively.
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Coefficient Map Example

Out
k21 k02 k32
In\\S

Leak

E k13

ko1

Leak
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Coefficient Map Example

Using the Proposition, we obtain the following coefficient map:

(ka1, ks, ki3, kot, ko2) — (e1, €2, €3 — korksokas, 5, €1 K)
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Coefficient Map Example

Using the Proposition, we obtain the following coefficient map:
(ka1, ks, ki3, kot, ko2) — (e1, €2, €3 — korksokas, 5, €1 K)
2

P
First, we compute xk = H kii—1 = H kii—1 = koi.

=2 i=2
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Coefficient Map Example

Coefficient Map:
(ka1, k3o, ki3, kot, ko2) + (e1, €2, €3 — korksakas, ko1, €] kot)

Now, we want to find the following sets for our Model:

E = {key1,|0 & Leak} U{kes1e+ koe|l € Leak} — {kiz} U {ka1 + ko1, ks2 + ko2 }

E" = {keta,e

£ =3,0¢ Leak} U {key1,e + ko,e|l = 3,¢ € Leak} — {kiz}
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Coefficient Map Example

Now we want to find the elementary symmetric polynomials e, e, 3, and e
on the following sets:

E = {ki3, ko1 + ko1, k32 + ko2 }
E* = {ki3}

Paul Dessauer, Tanisha Grimsley, Jose Lopez Identifiability of Directed Cycle Models



Coefficient Map Example

Now we want to find the elementary symmetric polynomials e, e, 3, and e
on the following sets:

E = {ki3, ko1 + ko1, k32 + ko2 }
E* = {ki3}

e = kiz + ko1 + ko1 + k32 + ko2
e = kiz(ko1 + ko1) + kiz(ks2 + koz) + (ko1 + ko1)(ks2 + ko2)
e3 = kiz(ko1 + ko1)(ks2 + ko2)

*
e = k13
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Coefficient Map Example

Finally, for the model with N = 3, In = {1}, Out = {2}, Leak = {1, 2}, we have
the following Coefficient Map

(ka1, k32, ki3, kot, ko2) — (e, €2, €3 — karksokus, ko1, €1 ka1)

e1 = kiz + ko1 + ko1 + k32 + ko2
& = kiz(ko1 + ko1) + kuz(ks2 + koz) + (ko1 + ko1)(ks2 + ko2)
e3 = kiz(ko1 + ko1)(ks2 + ko2)

e{ = k13
(ko1, k32, ki3, ko1, ko2) +— (ko1 + k32 + ki + ko1 + ko2,
e
ko1 kis 4 ko1 ki3 + ka1 ks2 + ko1 ks2 + kizksa + ka1 ko2 + kizkoz + ko1 ko2,

&
koikizkso + ko1 kiskoo + ko1 kizkoz, ko1, koikiz)
N S~

e3—ko1k3zkiz K e
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Jacobian Matrix

From the definition of the coefficient map we get the following general form of
the Jacobian matrix with two leaks:

Let r= H k,'+17,'
i=1

kay kg kin koi ky;
1 1 1 1 1 e
ngm) ‘,ék:w) r,(‘ﬂl n) ék'm) n;km) e
I e T~ M. < SN () R
(e — )] (e, — ) (g, — p)man) (o, — g0 ko) olns) en—T
pilka1) folkaz) . 0 0 0 0 K
(CTK)(R'M) ("T"'){k:”) (GTH)(FJM_H (,ﬁﬁ_)(km) (,ﬁﬁ_)(ku.) (zifh')(k“l) e{h‘,
(,3;73,)‘;{1»'21) ([3;713),;_(!-:;4) (,,‘;7?),{(}»'”_"4) (0;7?)5(&'1") (0:‘7?]),{(&'»,) (f’—;,p)f‘f(k"‘) e;,ph
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Jacobian Matrix Example

From the coefficient map, we get the following Jacobian matrix

1 1 1 1

kor + ks + ke ko kg +kn

ke + ko )kg
0

0 0

1

koo + kg + ke ko + ks + kn For + Koz +kan + k32

(Kog + kaz)hrs — krskay  (kon + kar)kis — Kuskar (Koo + ko ) (ko + ksz) — karksy (ke + kao)krs
1 0 0 0

k 13 0 “";’1

Recall that to be generically locally identifiable, the rank needs to equal
#Edges + #Leaks.

We have three edges, two leaks, and the rank of the Jacobian matrix is 5.
Thus, the model is generically locally identifiable.
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Definitions

Definition 3

A directed-cycle model with n compartments is a minimal model if it satisfies
any of the following: n = 3, there is a leak in the nth compartment, or the
output is in the n' compartment.
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Definition 3

A directed-cycle model with n compartments is a minimal model if it satisfies
any of the following: n = 3, there is a leak in the nth compartment, or the
output is in the n' compartment.

Definition 4

Let G, be a directed-cycle compartmental model with n compartments,

In= {1}, Out={p}, and Leak = {i,...,it} s.t. ir < n. Then G, , is the m
compartment sub-model of G, s.t. 3 < m < n, and the input, output and leak
locations are the same as in G,.
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Definitions

Definition 3

A directed-cycle model with n compartments is a minimal model if it satisfies
any of the following: n = 3, there is a leak in the nth compartment, or the
output is in the n' compartment.

Definition 4

Let G, be a directed-cycle compartmental model with n compartments,

In= {1}, Out={p}, and Leak = {i,...,it} s.t. ir < n. Then G, , is the m
compartment sub-model of G, s.t. 3 < m < n, and the input, output and leak
locations are the same as in G,.

Remark

If G is minimal, then it has no sub-models.
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Theorem

Theorem 1 (Dessauer, Grimsley, Lopez 2022)

Let G, be a non-minimal directed-cycle compartmental model and let G, ,_, be
the n — 1 compartment sub-model of G,. Then the coefficient map of G, ,_;
can be derived from the coefficient map of G, through the following
transformations:

kin—0
Knn—1 — ki,n—1
ko,i — ko,
Kiv1,0 > ki, forl<n—1
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Theorem Example

Out Out
k21 k32
. / k02 \ V‘ 02 Y
In
\ Leak \

Leak
k01 k14 ‘%3 k13
k01
Leak
Leak
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Theorem Example

(ko1, k3o, kaz, kia, ko1, ko2) — (€1, &, €3, € — ko1 ksakaskia, ko1, €] ko1, €5 ko1)
€1 = ka3 + ks + ko1 + ko1 + ka2 + ko2

€ = kazkia + kaz(ko1 + ko1) + kas(ks2 + ko2) + kia(koi + koi) + kia(ks2 + ko2) +
(ko1 + ko1)(ks2 + ko2)

€3 = kazkia(ko1 + ko1) + kaskia(ksz + ko2) + kaz(ko1 + ko1)(ks2 + koz) + kia(ko1 +
ko) (k32 + koz)

es = kazkia(ko1 + ko1)(ks2 + ko2)
K = ka1
€l = (ka3 + kua)

& = kaskua
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Theorem Example

e1 = kiz + 0+ ko1 + ko1 + ka2 + ko2

€ = k130 + kiz(ko1 + ko1) + kiz(ks2 + ko2) + O(kar + ko1) + O(ks2 + ko2) +
(ko1 + ko1)(ks2 + ko2)

€3 =
k130( k21 + ko1 ) +k130( k32 + ko2) + k13 (ka1 + ko1 ) (ka2 + ko2 ) +0( ka1 + ko1 ) (ka2 + koz)

es = k130( ko1 + ko) (ks2 + ko2)

K = ko1
ef = (ki3 +0)
e§ = k130

Paul Dessauer, Tanisha Grimsley, Jose Lopez Identifiability of Directed Cycle Models



Theorem Example

e = ki3 + ko1 + k32 + ko2
€ = kiz(ko1 + ko1) + kiz(ks2 + koz) + (ko1 + ko1)(ks2 + ko2)
e3 = kiz(ko1 + ko1)(ks2 + ko2)

H:kzl

e{ = k13
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Theorem Example

e1 = ki3 + ko1 + k32 + ko2

€ = kiz(ko1 + ko1) + kiz(ks2 + koz) + (ko1 + ko1)(ks2 + ko2)
e3 = kiz(ko1 + ko1)(ks2 + ko2)

K= ka

e = ki

Plug in these values into the coefficient map and we get the following map:

(ko1, k32, ki3, ko1, koz) > (ko1 + ka2 + kis + ko1 + ko2,
€1
koikis + kotkis + ko1ksz2 + korks2 + kizks2 + ka1 ko2 + kizko2 + ko1 ko,
&
ko1 kizks2 + ka1 kizkoa + korkizkoz, ko1 , ko1 kis)
~— =~

e3—ka1k3zkiz K &K
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Corollary 1

Corollary 1

Let G, be a non-minimal directed-cycle compartmental model and let G, ,, be
the m compartment sub-model of G,. Then the coefficient map of G, ,, can be
derived from the coefficient map of G, by doing the following transformations:

km+1,m = kl,m
ko, — ko,
ki1, 0 forn>1>m

Kig1,0— ki1, for | < m
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Corollary 2

Corollary 2

The mapping on the G, coefficient map — G, ,_; coefficient map from
Theorem 1 is equivalent to the following mapping on the
Jac(G,) — Jac(G,, ,_1):

@ Remove the n'" column, the nt" row, and the last row of the Jacobian G,.

@ Perform the transformation from Theorem 1.
n—1

0 .
@ Subtract % <H k,-+1,,-) from the (n — 1)™ row, where ki is the

parameter corresponding to column |.
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Corollary 2

Corollary 2

The mapping on the G, coefficient map — G, ,_; coefficient map from
Theorem 1 is equivalent to the following mapping on the
Jac(G,) — Jac(G,, ,_1):

@ Remove the n'" column, the nt" row, and the last row of the Jacobian G,.

@ Perform the transformation from Theorem 1.
n—1

0 .
@ Subtract % <H k,-+1,,-) from the (n — 1)™ row, where ki is the

parameter corresponding to column |.

(k21, k32, ks, k147 k01, koz) — (81, €2, 63,64 — k21k32k43k147 k21, erk217 ezkzl)

K21
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Databas

We constructed a database that classifies the identifiability of all models for
n=3,4,5. Here is a subset of our database.

locally identifiable?  Globally Identifiable Locally Identifiable Not Identifiable

n
p=2 Yes, SIAN ki3, ka1, ka2, x2(0),x3(0) ko1, koz, x1(0)
p=2, Yes, SIAN ko1, x2(0) ko, ko3, ki3, k32, x1(0), x3(0)

n
p=2, Yes, SIAN ka1, ka2, x2(0) ko, ko2, kia, ka3, x1(0), x3(0), xa(0)
p=2 Yes, SIAN ka1, x2(0) ko1, ko3, ks, ksa, ka3, x1(0), x3(0), xa(0)
p=2 Yes, SIAN ka1, x2(0) Kot kos, kua, kaz, ks, x1(0), x3(0), x4(0)
p=3, Yes, SIAN kia, kaz, x3(0), xa(0) ko1, ko3, ka1, kaa, x1(0), x2(0)
p=3, Yes, SIAN x3(0) Kou, kos, kia, kax, Kaa, kas, x10, x5(0), xa(0)
p=3, Yes, SIAN kua, ka3, x3(0), xa(0) ko2, ko3, ka1, ks, x1(0), x2(0)
p=3 Yes, SIAN x3(0) ko2, koa, ks, kv, k32, kas, x10, x2(0), x4(0)

n
p=2, Yes, SIAN ka1, ka2, x2(0) kot, ko2, kus, ka3, ksa, x1(0), x3(0), xa(0), x5(0)
p=2, Yes, SIAN ka1, %2(0) ko1, ko3, kis, k32, ka3, ksa, x1(0), x3(0), x4(0), x5(0)
p=2 Yes, SIAN ka1, x2(0) kov, koa, ks, ka2, ka3, ksa, x1(0), x3(0), xa(0), x5(0)
p=2, Yes, SIAN ka1, %2(0) kot kos, kus, ksz, ka3, ksa, x1(0), x3(0), x(0), x5(0)
p=3, Yes, SIAN kaz, x3(0) ko1, ko3, kis, ka1, ka2, ksa, x1(0), x2(0), x4(0), x5(0)
p=3, Yes, SIAN x(0) Kou, kos, Kis. kox, Kao. ks, ksa, x1(0), x2(0), xe(0), x5(0)
p=3 Yes, SIAN x3(0) Kou, kos, ks, kot ka2, Kas, ksa, x1(0), x2(0), x4(0), x5(0)
p=3, Yes, SIAN ka3, x3(0) ko2, ko3, kus, k1, ka2, ksa, x1(0), x2(0), xa(0), x5(0)
p=3 Yes, SIAN x3(0) ko2, koa, kis, ko1, ks, kaz, ksa, x1(0), x2(0), x4(0), x5(0)
p=3, Yes, SIAN x3(0) koz, kos, kis, ko1, k32, ka3, ksa, x1(0), x2(0), xa(0), x5(0)
p=4, Yes, SIAN ks, ksa, x4(0), x5(0) Kot kos, kox, ksz, ks, x1(0), x2(0), x3(0)
p=4 Yes, SIAN x(0) Kou, kos, kis, kat, ka2, kas, ksa, x1(0), x2(0), x3(0), x5(0)
p=4, Yes, SIAN kis, ksa, x4(0), x5(0) ko2, koa, ko1, ka2, kas, x1(0), x2(0), x3(0)
p=4 Yes, SIAN xa(0) Koz, kos, ks, kot ka2, Kas, ksa, x1(0), x2(0), x3(0), x5(0)
p=4 Yes, SIAN kis, ksa, x4(0), x5(0) ko2, kos, ka1, ka2, kas, x1(0), x2(0), x3(0)
p=4, Yes, SIAN xa(0) ko3, kos, kis, ko1, ksa, ka3, ksa, x1(0), x2(0), x3(0), x5(0)
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Conjecture 1

Let G, be a non-minimal directed-cycle compartmental model and let G, ,, be
the m compartment sub-model of G,. If G, is identifiable, then so is G, .
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Conjecture 1

Let G, be a non-minimal directed-cycle compartmental model and let G, ,, be
the m compartment sub-model of G,. If G, is identifiable, then so is G, .

n=3 n=4 n=2=uy
p=2L=1,2 p=2,L=1,2 p=2,L=1,2
p=2L=13 p=2L=13 p=2L=1,3
p=2L=14 p=2,L=1,4
p=3L=13 p=3,L=13
p=3,L=14 p=3 L=14
p=3L=23 p=3,L=2,3
p=3,L=24 p=3,L=24
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Conjecture 1

Let G, be a non-minimal directed-cycle compartmental model and let G, ,, be
the m compartment sub-model of G,. If G, is identifiable, then so is G, .

SSELS
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=4 n==>5

L=1,2 p=2,L=1,2
L=1,3 p=2,L=1,3
L=1,4 p=2L=1,4
L=1,3 p=3,L=1,3
L=1,4 p=3,L=1,4
L=2,3 p=3,L=2,3
L=2,4 p=3,L=2,4
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|
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Conjecture 2

Let G, be a directed-cycle model with In = {1}, Out = {p} s.t. 1 < p<n,
Leak = {i,j}. Then G, is generically locally identifiable if and only if i < p < ji.

Paul Dessauer, Tanisha Grimsley, Jose Lopez Identifiability of Directed Cycle Models



Conjecture 2

Let G, be a directed-cycle model with In = {1}, Out = {p} s.t. 1 < p<n,
Leak = {i,j}. Then G, is generically locally identifiable if and only if i < p < ji.

2—3
. / R
m—>1r v; <p — Leak
bj 2psp
Leak out
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Future Research

@ Prove both conjectures
o Extend the database

@ Investigate if the reduction that results from Theorem 1 preserves the
identifiability of the subsets of parameters

Identifiable: Globally Locally

n=3

p=2 L=1,2 ki, ko, ks2 ko, ko2

p=2,L=13 ka1 ko1, ko3, ki3, ks>
n=4

p=2, L= 1,2 k21,k32 k01,k02,k147

p=2L=1,3 ko1 ko1, ko3, kia, k32,

p=2L=14 ko1 ko1, koa, kia, ka2,
n=>5

p=2L=1,2 ko1, k32 ko1, ko2, kis, ka3, ksa

p=3,L=1,3 ko1, ko3, kis, ko1, k3o, ksa

p=4L=1,4 k1s, ksa ko1, koa, ko1, k32,
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