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Motivation

Biologists have observed neurons in some animal brains called
place cells, which act as position sensors. They fire at high rates
when the animal is inside the cell’s preferred region of the
environment, called its place field.

Figure: Place fields of neurons in a rat’s hippocampus. Note that these
place fields are approximately convex.
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Motivation

The intersections of place fields generate a neural code that helps
the brain determine an animal’s location at a given time. We
model these codes to understand their structure. One thing we
wish to understand is which of these neural codes can arise from
convex place fields – those observed experimentally.
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Neural Codes

Definition

A neural code (or code) C on n neurons is a collection of
codewords σ ⊆ [n] such that C ⊆ 2[n]. Elements in C that are
maximal with respect to set inclusion are called maximal
codewords, which we write in bold.

Example

C = {123, 12, 24, 45, 1, 2, ∅}.
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Generating a Neural Code

Example

Consider the family U = {U1,U2,U3,U4,U5} of subsets of R2

shown below. Then by definition,
C = C(U) = {123, 124, 45, 12, 13, 23, 14, 24, 1, 2, 3, 4, 5, ∅}.

∅
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Generating a Neural Code

Definition

Let U be some family of sets {U1, . . . ,Un} with Ui ⊂ Rd for some
d ≥ 1. The code generated by U is

C(U) :=

σ ⊆ [n] :

(⋂
i∈σ

Ui

)
\

⋃
j ̸∈σ

Uj

 ̸= ∅

 .

In particular, if the family U is composed by open convex sets, we
say that C = C(U) is an (open) convex code.
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Simplicial Complex

Definition

Given a code C on n neurons, we define a simplicial complex,
∆(C) := {ω ⊆ [n] : ω ⊆ σ for some σ ∈ C}.

Note: ∆(C) is closed under taking subsets.

Example

C = {123, 124, 45, 12, 13, 23, 1, 2, 3, 4, 5, ∅}.
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Facets

Definition

Given a simplicial complex ∆, its facets are the maximal sets with
respect to set inclusion in ∆.

Example

For ∆(C) = {123, 124, 45, 12, 13, 14, 23, 24, 1, 2, 3, 4, 5, ∅}, the set
of facets is F = {123, 124, 45}.
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Nerve Complex

Definition

For a collection of subsets W = {W1,W2, · · · ,Wn} of a set X , the
nerve of W is the simplicial complex,

N (W ) :=

{
I ⊂ [n] :

⋂
i∈I

Wi ̸= ∅

}
.

Recall that ∆(C) = {123, 124, 45, 12, 13, 14, 23, 24, 1, 2, 3, 4, 5, ∅}
has the set of facets is F = {123, 124, 45}.

1

2

345
∆(C) 12445 123

N (F)

G. Flores, O. Isekenegbe, D. Perez

Convexity of 4-Maximal Neural Codes



Motivation Background/Prior Results Methods/Results References

Nerve Complex

Definition

For a collection of subsets W = {W1,W2, · · · ,Wn} of a set X , the
nerve of W is the simplicial complex,

N (W ) :=

{
I ⊂ [n] :

⋂
i∈I

Wi ̸= ∅

}
.

Recall that ∆(C) = {123, 124, 45, 12, 13, 14, 23, 24, 1, 2, 3, 4, 5, ∅}
has the set of facets is F = {123, 124, 45}.

1

2

345
∆(C) 12445 123

N (F)

G. Flores, O. Isekenegbe, D. Perez

Convexity of 4-Maximal Neural Codes



Motivation Background/Prior Results Methods/Results References

Nerve Complex

Definition

For a collection of subsets W = {W1,W2, · · · ,Wn} of a set X , the
nerve of W is the simplicial complex,

N (W ) :=

{
I ⊂ [n] :

⋂
i∈I

Wi ̸= ∅

}
.

Recall that ∆(C) = {123, 124, 45, 12, 13, 14, 23, 24, 1, 2, 3, 4, 5, ∅}
has the set of facets is F = {123, 124, 45}.

1

2

345
∆(C)

12445 123

N (F)

G. Flores, O. Isekenegbe, D. Perez

Convexity of 4-Maximal Neural Codes



Motivation Background/Prior Results Methods/Results References

Nerve Complex

Definition

For a collection of subsets W = {W1,W2, · · · ,Wn} of a set X , the
nerve of W is the simplicial complex,

N (W ) :=

{
I ⊂ [n] :

⋂
i∈I

Wi ̸= ∅

}
.

Recall that ∆(C) = {123, 124, 45, 12, 13, 14, 23, 24, 1, 2, 3, 4, 5, ∅}
has the set of facets is F = {123, 124, 45}.

1

2

345
∆(C) 12445 123

N (F)
G. Flores, O. Isekenegbe, D. Perez

Convexity of 4-Maximal Neural Codes



Motivation Background/Prior Results Methods/Results References

Links

Definition

For a ∆(C) on n neurons the link of σ in ∆ is

Lk∆(σ) = {τ ⊂ [n] \ σ : τ ∪ σ ∈ ∆}.

Example

For ∆(C) = {123, 124, 45, 12, 13, 23, 14, 24, 1, 2, 3, 4, 5, ∅},
Lk∆(C)(3) = {12, 1, 2}.

21

Figure: Lk∆(3) = {12, 1, 2}
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Local Obstructions

Definition

A neural code C has a local obstruction at σσσ if there exists a
nonempty face σ ∈ ∆(C) such that:

σ is an intersection of at least two facets of ∆(C)
σ ̸∈ C
Lk∆(C)(σ) is not contractible.

Recall: A set U of a topological space X is contractible if it is
homotopy equivalent to a point.
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Local Obstructions and Convexity

It is known that convex codes do not have local obstructions [3].
However, for some codes, the converse is also true.

Theorem (Johnston, Shiu, Spinner 2020)

Let C be a code with at most 3 maximal codewords. Then C is
convex if and only if it has no local obstructions.

What happens if we consider codes on 4 maximal codewords?

Example

The code C∗ = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 4, 5, ∅} is a
locally good, non-convex code [5].
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Wheels

A wheel is a configuration of sets in Euclidean space that intersect
in a specific way that forces one of the sets to “bend” around an
intersection of the others, and hence be non-convex [6].

Figure: A conceptual wheel. Note how Uσ1 ,Uσ2 , and Uσ3 are convex, but
Uτ bends around the 3 sets.

Convex codes do not have wheels [6].
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Goals

Recall that convex codes lack local obstructions and wheels ([3],
[6]). We investigate the converse for codes with 4 facets.

Conjecture (R. Amzi Jeffs)

Let C be a code with exactly 4 maximal codewords. Then C is
(open) convex if and only if

C has no local obstructions, and

C has no wheels.
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Methods

The nerve lemma allows us to investigate convexity by looking
at the nerve of the facets of a code.

This splits our conjecture into cases based on the 20 simplicial
complexes on 4 vertices, where each vertex represents a facet.

We only consider the 14 connected complexes, since if a
simplicial complex is disconnected we can treat each
connected component separately.
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Methods

Figure: The simplicial complexes on up to 4 vertices [2].
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Methods

Definition

A code C is max-∩∩∩-complete if it contains every intersection of at
least two facets of C.

Example

The neural code C(U) = {123, 124, 45, 12, 13, 23, 14, 24, 1, 2, 3, 4,
5, ∅} has the set of facets F = {123, 124, 45}. C(U) is
max-∩-complete.
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Results

Max-∩-complete codes are locally good (since they are convex) [1].
We proved the converse in the following special case:

Theorem (Flores, Isekenegbe, Perez 2022)

Let C be a neural code and denote by F the set of facets of C. If
N (F) contains no 2-simplices, then the following are equivalent:

C has no local obstructions

C is max-∩-complete

C is convex

This proves our conjecture in 6 of the 14 cases!
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Applying the Theorem

Consider the code given by C2 = {123, 45, 24, 15, . . . } such that
123 = F1, 15 = F2, 24 = F3, and 45 = F4. N (F) is drawn below.
Since it has no filled-in triangles, we conclude by the theorem that
it is convex exactly when 1, 2, 5 ∈ C2.

123

15

24

45
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Results

Theorem (Flores, Isekenegbe, Perez 2022)

Let C be a 4-maximal code with set of facets F such that N (F) is
the simplicial complex L18. Then C is convex if and only if it
contains no local obstructions.

Example

C3 = {123, 124, 125, 56, 12, 1, 2, 5, ∅} has facets
F = {123, 124, 125, 56}, which have an L18 nerve. Observe that
the faces that are intersections of more than one facet are 12 and
5, which are both in C. So C3 is convex by our theorem.
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Next Steps

We are looking into properties of morphisms, a concept from [4].

Definition

Let C ⊆ 2[n] be a code, and let γ ⊆ [n]. Then the restriction
morphism defined by γ is πγ : C → 2[n] given by πγ(c) = c ∩ γ.
We will use C|γ to denote πγ(C).
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Next Steps

Prove the L21 case using morphisms
Investigate codes with wheels
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Next Steps

Example

C4 = {123, 124, 125, 45, 1, 2, ∅} is in the L21 case.

124

125

45123

∆(C4)
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Next Steps

Example

C∗ = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 4, 5, ∅} is in the L26
case. Recall that this code has a wheel and is locally good.

2345

123

134145

∆(C∗)
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Appendix: Proof of Proposition

Proof.

It suffices to prove the reverse implication, which we do by proving
its contrapositive. Suppose that C is not max ∩-complete. Then
there exists some σ ̸∈ C and Fi ,Fj ∈ F such that σ = Fi ∩ Fj .
Since the nerve of the facets of C contains no 2-simplices, any
triple-wise intersection of facets of C must be empty. In particular,
σ ̸⊆ Fk for any k ̸∈ {i , j}. Otherwise, ∅ ≠ σ ⊆ (Fi ∩ Fj ∩ Fk),
which would be a contradiction. This implies that Lkσ(∆(C)) is
not contractible. By assumption, σ ̸∈ C, meaning that C must have
a local obstruction at σ.
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