On the Schur Positivity of Differences of Products of Schur Functions
MSRI-UP 2013: Algebraic Combinatorics June 15, 2013 - July 28, 2013
Location: SLMath: Eisenbud Auditorium
v1098_b
The Schur functions are a basis for the ring of symmetric functions indexed by partitions of nonnegative integers. A symmetric function f is called Schur positive if when expressed as a linear combination of Schur functions
each coefficient cλ is nonnegative. We wish to investigate expressions of the form
where λ partitions n and μ partitions n-1 and the complements λc,μc are taken over a sufficiently large m×m square. We give a necessary condition that if (1) is Schur positive, then μ is contained in λ. Furthermore, we show how conjugating partitions preserve Schur positivity. Lastly, we incorporate the Littlewood Richardson rule to show that particular classes of λ of μ are never Schur positive.
v1098_b
H.264 Video |
v1098_b.m4v
|
Download |
Quicktime |
v1098_b.mov
|
Download |
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.