Home /  Finite morphisms: deformations, positivity and applications

Seminar

Finite morphisms: deformations, positivity and applications March 17, 2009
Parent Program: --
Location: SLMath: Baker Board Room
Speaker(s) Prof. Dr. Thomas Peternell
Description No Description
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification No Primary AMS MSC
Secondary Mathematics Subject Classification No Secondary AMS MSC
Video
No Video Uploaded
Abstract/Media

I will discuss (mostly) finite morphisms of projective manifolds, in particular deformation theory and positivity of the associated vector bundle and apply that in geometric situations. In particular the deformations of a surjective morphism f from a normal projective variety to a non-uniruled projective manifold is non-obstructed and all components of the Hom scheme are abelian varieties. More precisely, all small deformations of f come from automorphisms of some etale cover over
which f factors. An important role in the proof plays the rank (d-1) bundle E assoicated to a d-sheeted cover and its positivity properties. We show that E is ample if f is Galois, does not factor through anÊetale map and if the irreducible components of the ramification divisor are ample.

No Notes/Supplements Uploaded No Video Files Uploaded