Seminar
Parent Program: | -- |
---|---|
Location: | UC Berkeley |
Location: UC Berkeley, 736 Evans Hall
Title: The Kardar-Parisi-Zhang Equation.
Week 1: A Weakly Asymmetric Exclusion Process Approximation.
Abstract: The Kardar-Parisi-Zhang equation is a stochastic PDE which, despite being mathematically ill-posed, is perhaps the default model for stochastically growing height interfaces. One way to make sense of this equation is to interpret it in terms of the solution to the stochastic heat equation (related via the Hopf-Cole transform). Bertini and Giacomin provided an approach which shows that this interpretation is the scaling limit for a suitably scaled discrete growth process / particle system. In this first talk we will focus on this approach.
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification
Secondary Mathematics Subject Classification