Seminar
Parent Program: | -- |
---|---|
Location: | SLMath: Eisenbud Auditorium |
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification
Secondary Mathematics Subject Classification
We provide some background on the rate of escape of random walks and its relation to compression exponents. We then show that any simple symmetric random walk on a Cayley graph of a polycyclic group has the same rate of escape as a random walk on the integer lattice so long as the Fitting subgroup has uniform exponential distortion. The ideas behind this proof can be generalized to metabelian groups which contain non-finitely generated subgroups, where a similar result is obtained.
No Notes/Supplements Uploaded No Video Files Uploaded