Seminar
Parent Program: | -- |
---|---|
Location: | SLMath: Eisenbud Auditorium |
This is a report on joint work with Eric Friedlander, Julia Pevtsova and sometimes Andrei Suslin. We introduce higher rank variations on the notion of $\pi$-points as defined by Friedlander and Pevtsova for representations of finite group schemes. Using this we can define module of constant r-radical and r-socle type. Such modules determine bundles over the Grassmannian associated to the higher rank $\pi$-points in the case that the group scheme is infinitesimal of height one. When the group scheme is an elementary abelian p-group, there is universal function for computing the kernel bundles as modules over the structure sheaf of the Grassmannian of r-planes in n space. These ideas also extend to various sorts of subalgebra of restricted p-Lie algebras.
No Notes/Supplements Uploaded No Video Files Uploaded