Seminar
Parent Program: | |
---|---|
Location: | SLMath: Eisenbud Auditorium |
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification
No Primary AMS MSC
Secondary Mathematics Subject Classification
No Secondary AMS MSC
Let X be a non-singular curve over a number field K. Consider two kinds of obstructions to the existence of K-points on X: local obstructions (e.g., X has no points over R or over Q_p), and finite Galois obstructions (e.g., there exists an element s of Gal(\bar K/K) such that no element of X(\bar K) is s-stable). I will ask whether these two obstructions are the same and discuss evidence coming from algebraic number theory, Diophantine geometry, and additive combinatorics.
No Notes/Supplements Uploaded No Video Files Uploaded