Home /  MT Research Seminar: Local vs. finite Galois obstructions to rational points.

Seminar

MT Research Seminar: Local vs. finite Galois obstructions to rational points. March 04, 2014 (11:00 AM PST - 12:30 PM PST)
Parent Program:
Location: SLMath: Eisenbud Auditorium
Speaker(s) Michael Larsen (Indiana University)
Description No Description
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification No Primary AMS MSC
Secondary Mathematics Subject Classification No Secondary AMS MSC
Video
No Video Uploaded
Abstract/Media

Let X be a non-singular curve over a number field K.  Consider two kinds of obstructions to the existence of K-points on X: local obstructions (e.g., X has no points over R or over Q_p), and finite Galois obstructions (e.g., there exists an element s of Gal(\bar K/K) such that no element of X(\bar K) is s-stable).  I will ask whether these two obstructions are the same and discuss evidence coming from algebraic number theory, Diophantine geometry, and additive combinatorics.

No Notes/Supplements Uploaded No Video Files Uploaded