Seminar
Parent Program: | |
---|---|
Location: | SLMath: Eisenbud Auditorium |
For elliptic curves E/Q whose L-function L=L(E,s) vanishes to order one at s=1, the rank of E(Q) is also known to be one. This is the first prediction of the Birch and Swinnerton-Dyer conjecture, and the main ingredient of the proof is the formula of Gross and Zagier relating the heights of modularly-constructed points on E to the central derivative of L. The second prediction of BSD is a formula for the central leading term of L. This is only implied by the Gross-Zagier formula up to a nonzero rational number. One way to go on and study the BSD formula up to p-integrality is provided by a p-adic analogue of the Gross-Zagier formula due to Perrin-Riou and Kobayashi. I will explain this circle of ideas as well as its generalization to totally real fields. Time permitting, I will also discuss the representation-theoretic context.
The talk is meant to be accessible to a broad audience.
No Notes/Supplements Uploaded No Video Files Uploaded