Seminar
Parent Program: | -- |
---|---|
Location: | SLMath: Baker Board Room |
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification
No Primary AMS MSC
Secondary Mathematics Subject Classification
No Secondary AMS MSC
In this talk, we will discuss the question of whether continuous, simple curves in Euclidean space with sigma-finite length have tangents at any points. The results on $\sigma$-finite curves that we will discuss were initiated by the observation that the graph of a continuous function on [0,1] that satisfies a weak-Lipschitz property has sigma-finite one-dimensional Hausdorff measure. We will discuss our conclusion that every $\sigma$-finite curve has a tangent, in the pointwise sense, on a set of positive measure. This is joint work with M. Csornyei.
No Notes/Supplements Uploaded No Video Files Uploaded