Home /  Symmetry in Geometry: Immortal homogeneous Ricci flows

Seminar

Symmetry in Geometry: Immortal homogeneous Ricci flows April 28, 2016 (01:30 PM PDT - 02:30 PM PDT)
Parent Program: --
Location: SLMath: Eisenbud Auditorium
Speaker(s) Ramiro Lafuente (Westfälische Wilhelms-Universität Münster)
Description No Description
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification No Primary AMS MSC
Secondary Mathematics Subject Classification No Secondary AMS MSC
Video
No Video Uploaded
Abstract/Media

A solution to the unnormalized Ricci flow equation is called immortal if it exists for all times t > 0. The asymptotic behavior of these solutions is in general much less understood than in the case of a finite time singularity. For instance, they might be collapsed, and they might also converge locally to non-gradient solitons, which cannot be detected using Perelman's entropy functional. In this talk, we will show that for immortal homogeneous solutions of arbitrary dimension and isometry group, the flow subconverges (after parabolic rescaling) to an expanding homogeneous Ricci soliton. We will also give further results in the special case of solvable Lie groups. This is joint work with Christoph Böhm.

No Notes/Supplements Uploaded No Video Files Uploaded