Mandi A. Schaeffer Fry

"Real Life": Assistant Prof, MSU Denver

MSRI: Postdoc, GRTA

< □ > < ② > < ≧ > < ≧ > < ≧ > ≧ のQ (* 1/3

Mandi A. Schaeffer Fry

"Real Life": Assistant Prof, MSU Denver

MSRI: Postdoc, GRTA

Research Area:

Groups

イロン イボン イヨン 一日

1/3

Mandi A. Schaeffer Fry

"Real Life": Assistant Prof, MSU Denver METROPOLITAN STATE UNIVERSITY OF DENVER

MSRI: Postdoc, GRTA

Research Area:

Finite Groups

イロン イボン イヨン 一日

1/3

Mandi A. Schaeffer Fry

"Real Life": Assistant Prof, MSU Denver

MSRI: Postdoc, GRTA

イロン イボン イヨン 一日

1/3

Research Area:

Representations of Finite Groups

Mandi A. Schaeffer Fry

"Real Life": Assistant Prof, MSU Denver

MSRI: Postdoc, GRTA

イロン イボン イモン イモン 三日

2/3

Research Area:

Representations of Finite Groups Characters

Mandi A. Schaeffer Fry

"Real Life": Assistant Prof, MSU Denver

MSRI: Postdoc, GRTA

Research Area:

Representations of Finite Groups (of Lie Type) Characters

Galois action on characters

Galois action on characters

- Galois action on characters (of groups of Lie type)
 - Navarro's Galois-McKay and related conjectures

Galois action on characters (of groups of Lie type)

Navarro's Galois-McKay and related conjectures

$$P \in \operatorname{Syl}_2(G), \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) : \zeta_2^{\sigma} = \zeta_2; \zeta_{2'}^{\sigma} = \zeta_{2'}^2$$

Galois action on characters (of groups of Lie type)

Navarro's Galois-McKay and related conjectures

$$P \in \operatorname{Syl}_2(G), \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) : \zeta_2^{\sigma} = \zeta_2; \zeta_{2'}^{\sigma} = \zeta_{2'}^2$$

Theorem:

$$N_G(P) = P \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(G)$$

Galois action on characters (of groups of Lie type)

Navarro's Galois-McKay and related conjectures

$$P \in \operatorname{Syl}_2(G), \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) : \zeta_2^{\sigma} = \zeta_2; \zeta_{2'}^{\sigma} = \zeta_{2'}^2$$

Theorem:

$$N_G(P) = P \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(G)$$

Theorem:

$$N_G(P) = P \times V \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(B_0)$$

Galois action on characters (of groups of Lie type)

Navarro's Galois-McKay and related conjectures

$$P \in Syl_2(G), \sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q}) : \zeta_2^{\sigma} = \zeta_2; \zeta_{2'}^{\sigma} = \zeta_{2'}^2$$

Theorem:

$$N_G(P) = P \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(G)$$

Theorem:

$$N_G(P) = P \times V \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(B_0)$$

Real classes and real characters

Galois action on characters (of groups of Lie type)

Navarro's Galois-McKay and related conjectures

$$P \in Syl_2(G), \sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q}) : \zeta_2^{\sigma} = \zeta_2; \zeta_{2'}^{\sigma} = \zeta_{2'}^2$$

Theorem:

$$N_G(P) = P \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(G)$$

Theorem:

$$N_G(P) = P \times V \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(B_0)$$

Real classes and real characters(Other) local-global conjectures

Galois action on characters (of groups of Lie type)

Navarro's Galois-McKay and related conjectures

$$P \in Syl_2(G), \sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q}) : \zeta_2^{\sigma} = \zeta_2; \zeta_{2'}^{\sigma} = \zeta_{2'}^2$$

Theorem:

$$N_G(P) = P \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(G)$$

Theorem:

$$N_G(P) = P \times V \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(B_0)$$

Real classes and real characters(Other) local-global conjectures

Galois action on characters (of groups of Lie type)

Navarro's Galois-McKay and related conjectures

$$P \in Syl_2(G), \sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q}) : \zeta_2^{\sigma} = \zeta_2; \zeta_{2'}^{\sigma} = \zeta_{2'}^2$$

Theorem:

$$N_G(P) = P \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(G)$$

Theorem:

$$N_G(P) = P \times V \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(B_0)$$

Real classes and real characters

(Other) local-global conjectures (or their inductive conditions)

Galois action on characters (of groups of Lie type)

Navarro's Galois-McKay and related conjectures

$$P \in Syl_2(G), \sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q}) : \zeta_2^{\sigma} = \zeta_2; \zeta_{2'}^{\sigma} = \zeta_{2'}^2$$

Theorem:

$$N_G(P) = P \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(G)$$

Theorem:

$$N_G(P) = P \times V \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(B_0)$$

Real classes and real characters

- (Other) local-global conjectures (or their inductive conditions)
- Irreducible restrictions

Galois action on characters (of groups of Lie type)

Navarro's Galois-McKay and related conjectures

$$P \in Syl_2(G), \sigma \in Gal(\overline{\mathbb{Q}}/\mathbb{Q}) : \zeta_2^{\sigma} = \zeta_2; \zeta_{2'}^{\sigma} = \zeta_{2'}^2$$

Theorem:

$$N_G(P) = P \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(G)$$

Theorem:

$$N_G(P) = P \times V \iff \chi = \chi^\sigma \quad \forall \chi \in \operatorname{Irr}_{2'}(B_0)$$

Real classes and real characters

- (Other) local-global conjectures (or their inductive conditions)
- Irreducible restrictions
- Degree bounds