Christopher Drupieski, DePaul University

Research Member, GRTA

Research interests: Representation theory and cohomology of algebraic groups and related structures, e.g., Lie algebras, finite group schemes, Lie superalgebras, Hopf algebras...

 $k = \overline{k}$ field of characteristic $p > n \ge 2$.

Let M be a finite-dimensional rational GL_n -module.

When is *M* projective for the *p*-Lie algebra $\mathfrak{g} = \mathfrak{gl}_n$, i.e., when is it projective as a module for the restricted enveloping algebra $u(\mathfrak{g})$?

Invariants defined using cohomology (support varieties)

- $MaxSpec(H^{\bullet}(u(\mathfrak{g}), k)) \cong \mathcal{N}(\mathfrak{g}) := \{X \in \mathfrak{gl}_n : X \text{ is nilpotent}\}$
- $M \mapsto \{x \in \mathcal{N}(\mathfrak{g}) : M|_{\langle x \rangle} \text{ is not projective}\} \cup \{0\}$ Moreover, M maps to a set that is stable under conjugation.
- $M \mapsto \{0\}$ if and only if M is projective for $u(\mathfrak{g})$
- Using the geometry of nilpotent orbits, suffices to check whether $M|_{\langle x \rangle}$ is free when $x \in \mathfrak{gl}_n$ is any single root vector.