MSRI 5-minute talks

Itay Glazer

Weizmann Institute of Science

Advisor: Rami Aizenbud

GRTA program

- Representation theory of real reductive groups.
- Algebraic geometry and analysis on algebraic varieties.

February 15, 2018

MSRI 5-minute talks

Definition

1) Let G be a finite group and $H \le G$ a subgroup. We say that (G, H) is a **Gelfand pair** if $\forall \pi \in Irr(G)$, we have $\dim_{\mathbb{C}}(\pi^*)^H \le 1$, or equivalently

 $\dim_{\mathbb{C}} \operatorname{Hom}_{G}(\pi, \mathbb{C}[G/H]) \leq 1.$

2) This notion can be generalized to a pair (G, H) where G is a reductive group and $H \leq G$ is a closed subgroup.

Definition

1) Let G be a finite group and $H \le G$ a subgroup. We say that (G, H) is a **Gelfand pair** if $\forall \pi \in Irr(G)$, we have $\dim_{\mathbb{C}}(\pi^*)^H \le 1$, or equivalently

 $\dim_{\mathbb{C}} \operatorname{Hom}_{G}(\pi, \mathbb{C}[G/H]) \leq 1.$

2) This notion can be generalized to a pair (G, H) where G is a reductive group and $H \leq G$ is a closed subgroup.

The following are Gelfand pairs:

- $(S_n, S_{n-1}), (G \times G, \triangle G).$
- (GL_n(ℂ), O_n(ℂ)), (GL_n(ℂ), GL_m(ℂ) × GL_{n-m}(ℂ)), (G, K), where G is a real reductive group and K a maximal compact subgroup.

Definition

1) Let G be a finite group and $H \le G$ a subgroup. We say that (G, H) is a **Gelfand pair** if $\forall \pi \in Irr(G)$, we have $\dim_{\mathbb{C}}(\pi^*)^H \le 1$, or equivalently

 $\dim_{\mathbb{C}} \operatorname{Hom}_{G}(\pi, \mathbb{C}[G/H]) \leq 1.$

2) This notion can be generalized to a pair (G, H) where G is a reductive group and $H \leq G$ is a closed subgroup.

The following are Gelfand pairs:

- $(S_n, S_{n-1}), (G \times G, \triangle G).$
- (GL_n(ℂ), O_n(ℂ)), (GL_n(ℂ), GL_m(ℂ) × GL_{n-m}(ℂ)), (G, K), where G is a real reductive group and K a maximal compact subgroup.

Conjecture (van Dijk)

Let G be a complex reductive group, θ : G \rightarrow G a complex involution, and H an open subgroup of G^{θ}. Then (G, H) is a Gelfand pair.

イロト イボト イヨト イヨト

э