Alessio Sammartano

Fall 2017: PhD at Purdue University, advisor Giulio Caviglia Spring 2018: MSRI, Postdoctoral Fellow in the Complementary Program From Fall 2018: postdoc at University of Notre Dame

Research interests: Commutative algebra

In particular: syzygies, Hilbert functions, blowup algebras, determinantal rings; combinatorial and computational aspects.

Bounds on free resolutions

Let $X \subseteq \mathbb{P}^n$ be a complete intersection of r hypersurfaces of degrees d_1, d_2, \ldots, d_r . Fix a Hilbert polynomial p(z). For a closed subscheme $Y \in \operatorname{Hilb}^{p(z)}(X)$ consider

 $0 \to S^{\beta_m} \to S^{\beta_{m-1}} \to \dots \to S^{\beta_1} \to S^{\beta_0} \to \mathit{I}_Y \to 0 \qquad \text{ where } S = \mathbb{K}[x_0,\dots,x_n].$

Are there uniform upper bounds on the ranks $\beta_0, \beta_1, \ldots, \beta_m$?

Bounds on free resolutions

Let $X \subseteq \mathbb{P}^n$ be a complete intersection of r hypersurfaces of degrees d_1, d_2, \ldots, d_r . Fix a Hilbert polynomial p(z). For a closed subscheme $Y \in \operatorname{Hilb}^{p(z)}(X)$ consider $0 \to S^{\beta_m} \to S^{\beta_{m-1}} \to \cdots \to S^{\beta_1} \to S^{\beta_0} \to I_Y \to 0$ where $S = \mathbb{K}[x_0, \ldots, x_n]$.

Are there uniform upper bounds on the ranks $\beta_0, \beta_1, \ldots, \beta_m$?

Defining equations of K-algebras

Let $S = \mathbb{K}[x_0, x_1, \dots, x_n]$ and $f_0, f_1, \dots, f_s \subseteq S$ be homogeneous polynomials of the same degree.

What are the relations of the algebra $R = \mathbb{K}[f_0, f_1, \dots, f_s] \subseteq S$?

Bounds on free resolutions

Let $X \subseteq \mathbb{P}^n$ be a complete intersection of r hypersurfaces of degrees d_1, d_2, \ldots, d_r . Fix a Hilbert polynomial p(z). For a closed subscheme $Y \in \operatorname{Hilb}^{p(z)}(X)$ consider

 $0 \to S^{\beta_m} \to S^{\beta_{m-1}} \to \cdots \to S^{\beta_1} \to S^{\beta_0} \to I_Y \to 0 \qquad \text{where } S = \mathbb{K}[x_0, \dots, x_n].$

Are there uniform upper bounds on the ranks $\beta_0, \beta_1, \ldots, \beta_m$?

Defining equations of K-algebras

Let $S = \mathbb{K}[x_0, x_1, \dots, x_n]$ and $f_0, f_1, \dots, f_s \subseteq S$ be homogeneous polynomials of the same degree.

What are the relations of the algebra $R = \mathbb{K}[f_0, f_1, \dots, f_s] \subseteq S$?

Ex.1 f_0, \ldots, f_s = minors of a matrix of linear forms; Ex.2 f_0, \ldots, f_s = square-free monomials corresponding to the bases of a matroid.

(日)