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Let G act on a space X. One can consider harmonic analysis over X (i.e. the

study of the G representation F (X)) as a generalization of representation
theory.
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Schur’s lemma is analogous to the Gelfand property:
vr € irr(G) : (F(X),n) <1
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Let G be a reductive algebraic group scheme and X be a spherical G space
(i.e. over any algebraically closed field, the Borel acts with finitely may orbits
on X).
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