Graduate Student, GRTA

Ben Gurion University, Israel

Supervisor: Prof. Uri Onn

Graduate Student, GRTA

Ben Gurion University, Israel

Supervisor: Prof. Uri Onn

Representation Growth

Pick a group G.

Graduate Student, GRTA

Ben Gurion University, Israel

Supervisor: Prof. Uri Onn

Representation Growth

Pick a group *G*.

• How many complex irreducible representations of dimension n does G have? Let $r_n(G)$ denote this number.

Graduate Student, GRTA

Ben Gurion University, Israel

Supervisor: Prof. Uri Onn

Representation Growth

Pick a group *G*.

• How many complex irreducible representations of dimension n does G have? Let $r_n(G)$ denote this number.

2 Describe the sequence $(r_n(G))_{n=1}^{\infty}$.

Graduate Student, GRTA

Ben Gurion University, Israel

Supervisor: Prof. Uri Onn

Representation Growth

Pick a group *G*.

- How many complex irreducible representations of dimension n does G have? Let $r_n(G)$ denote this number.
- **2** Describe the sequence $(r_n(G))_{n=1}^{\infty}$ asymptotically.

Key tool: The Representation Zeta Function

$$\zeta_G(s) = \sum_{n=1}^{\infty} r_n(G) n^{-s}.$$

Graduate Student, GRTA

Ben Gurion University, Israel

Supervisor: Prof. Uri Onn

Representation Growth

Pick a group *G*.

- How many complex irreducible representations of dimension n does G have? Let $r_n(G)$ denote this number.
- **2** Describe the sequence $(r_n(G))_{n=1}^{\infty}$ asymptotically.

Key tool: The Representation Zeta Function

$$\zeta_G(s) = \sum_{n=1}^{\infty} r_n(G) n^{-s}.$$

- Finite groups of Lie-type
- *p*-adic integration and geometry
- Analysis on algebraic varieties

- Representations of groups over finite rings
- Model theory

Consider $G = SL_3(\mathbb{Z})$.

Consider $G = SL_3(\mathbb{Z})$. In this case

$$\zeta_{\mathrm{SL}_3(\mathbb{Z})}(s) = \zeta_{\mathrm{SL}_3(\mathbb{C})}(s) \cdot \prod_p \zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s)$$

Consider $G = SL_3(\mathbb{Z})$. In this case

$$\zeta_{\mathrm{SL}_3(\mathbb{Z})}(s) = \zeta_{\mathrm{SL}_3(\mathbb{C})}(s) \cdot \prod_p \zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s)$$

Theorem (A. Jaikin-Zapirain)

For any prime p, there exist $W_1, \ldots, W_r \in \mathbb{Q}(x)$ and $n_1, \ldots, n_r \in \mathbb{N}$, such that

$$\zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s) = n_1^{-s} W_1(p^{-s}) + \dots + n_r^{-s} W_r(p^{-s}). \tag{(\star)}$$

Consider $G = SL_3(\mathbb{Z})$. In this case

$$\zeta_{\mathrm{SL}_3(\mathbb{Z})}(s) = \zeta_{\mathrm{SL}_3(\mathbb{C})}(s) \cdot \prod_p \zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s)$$

Theorem (A. Jaikin-Zapirain)

For any prime p, there exist $W_1, \ldots, W_r \in \mathbb{Q}(x)$ and $n_1, \ldots, n_r \in \mathbb{N}$, such that

$$\zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s) = n_1^{-s} W_1(p^{-s}) + \dots + n_r^{-s} W_r(p^{-s}). \tag{(\star)}$$

Uniformity?

What is the dependency of (\star) on the prime *p*?

Consider $G = SL_3(\mathbb{Z})$. In this case

$$\zeta_{\mathrm{SL}_3(\mathbb{Z})}(s) = \zeta_{\mathrm{SL}_3(\mathbb{C})}(s) \cdot \prod_p \zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s)$$

Theorem (A. Jaikin-Zapirain)

For any prime p, there exist $W_1, \ldots, W_r \in \mathbb{Q}(x)$ and $n_1, \ldots, n_r \in \mathbb{N}$, such that

$$\zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s) = n_1^{-s} W_1(p^{-s}) + \dots + n_r^{-s} W_r(p^{-s}). \tag{(\star)}$$

Uniformity?

What is the dependency of (\star) on the prime *p*?

 $\checkmark G = SL_2, SL_3$ [Avni, Klopsch, Onn& Voll]

Consider $G = SL_3(\mathbb{Z})$. In this case

$$\zeta_{\mathrm{SL}_3(\mathbb{Z})}(s) = \zeta_{\mathrm{SL}_3(\mathbb{C})}(s) \cdot \prod_p \zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s)$$

Theorem (A. Jaikin-Zapirain)

For any prime p, there exist $W_1, \ldots, W_r \in \mathbb{Q}(x)$ and $n_1, \ldots, n_r \in \mathbb{N}$, such that

$$\zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s) = n_1^{-s} W_1(p^{-s}) + \dots + n_r^{-s} W_r(p^{-s}). \tag{(\star)}$$

Uniformity?

What is the dependency of (\star) on the prime *p*?

- $\checkmark G = SL_2, SL_3$ [Avni, Klopsch, Onn& Voll]
- ✓ Principal congruence subgroups [AKOV]

Consider $G = SL_3(\mathbb{Z})$. In this case

$$\zeta_{\mathrm{SL}_3(\mathbb{Z})}(s) = \zeta_{\mathrm{SL}_3(\mathbb{C})}(s) \cdot \prod_p \zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s)$$

Theorem (A. Jaikin-Zapirain)

For any prime p, there exist $W_1, \ldots, W_r \in \mathbb{Q}(x)$ and $n_1, \ldots, n_r \in \mathbb{N}$, such that

$$\zeta_{\mathrm{SL}_3(\mathbb{Z}_p)}(s) = n_1^{-s} W_1(p^{-s}) + \dots + n_r^{-s} W_r(p^{-s}). \tag{(\star)}$$

Uniformity?

What is the dependency of (\star) on the prime *p*?

- $\checkmark G = SL_2, SL_3$ [Avni, Klopsch, Onn& Voll]
- ✓ Principal congruence subgroups [AKOV]
- ✓ Regular characters [Krakowski, Onn& Singla, S.- Classical groups]