Home /  Hamiltonian Colloquium: Dynamical zeta functions and topology for negatively curved surfaces

Seminar

Hamiltonian Colloquium: Dynamical zeta functions and topology for negatively curved surfaces December 03, 2018 (04:00 PM PST - 05:00 PM PST)
Parent Program:
Location: SLMath: Eisenbud Auditorium
Speaker(s) Semyon Dyatlov (Massachusetts Institute of Technology)
Description No Description
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification No Primary AMS MSC
Secondary Mathematics Subject Classification No Secondary AMS MSC
Video
No Video Uploaded
Abstract/Media

Speaker: Semyon Dyatlov, UC Berkeley

Dynamical zeta functions and topology for negatively curved surfaces

Abstract: For a negatively curved compact Riemannian manifold (or more generally, for an Anosov flow), the Ruelle zeta function is defined by

where the product is taken over all primitive closed geodesics γ with lγ > 0 denoting their length. Remarkably, this zeta function continues meromorphically to all of C.

Using recent advances in the study of resonances for Anosov flows and simple arguments from microlocal analysis, we prove that for an orientable negatively curved surface, the order of vanishing of ζ(s) at s = 0 is given by the absolute value of the Euler characteristic. In constant curvature this follows from the Selberg trace formula and this is the first result of this kind for manifolds which are not locally symmetric. This talk is based on joint work with Maciej Zworski.

No Notes/Supplements Uploaded No Video Files Uploaded