Seminar
Parent Program: | |
---|---|
Location: | SLMath: Eisenbud Auditorium |
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification
No Primary AMS MSC
Secondary Mathematics Subject Classification
No Secondary AMS MSC
Cubic threefolds were the first class of varieties who were shown to be unirational but not rational (Clemens,Griffiths). The key tool of the proof is the intermediate Jacobian, a principally polarized abelian variety of dimension 5. There is a second link to Hodge theory, namely via cubic fourfolds (Allcock, Carlson, Toledo) which leads to a $10$-dimensional ball quotient model. Looking at cubic threefolds from these different points of view leads to various geometrically relevant compactifications of the moduli space of cubic threefolds. In this talk I will discuss the geometry and the topology of these spaces. This is joint work with S. Casalaina-Martin, S. Grushevsky and R. Laza.
No Notes/Supplements Uploaded No Video Files Uploaded