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Abstract

The Hochschild cohomology is a tool for studying associative algebras that has a lot
of structure: it is a Gerstenhaber algebra. However, computing this structure is difficult.
We will give a mild introduction to this cohomology, we will justify its importance by
computing some of the lower degrees, and we will emphasize the limitations of restricting
ourselves to one resolution. We will conclude by presenting some of the recent developments
that advance the understanding of its structure, and by mentioning applications to quantum
symmetries. This is joint work with Tekin Karadag, Dustin McPhate, Tolulope Oke, and
Sarah Witherspoon.
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1 Motivation

Before jumping into the definitions and the abstract concepts, let me tell you about the result
motivating some of this work: In 2014 Le and Zhou proved that HH∗(A⊗B) ∼= HH∗(A)⊗HH∗(B)
under some finiteness conditions. It concerns Hochschild cohomology and the usual tensor product
of k-algebras, which is commutative. There are generalizations of this tensor product to the non-
commutative case, like the twisted tensor product, and it would be nice to have a similar behavior
over it, something like “HH∗(A ⊗τ B) ∼= HH∗(A) ⊗τ HH∗(B)”. Unfortunately, that symbol-by-
symbol translation cannot possibly be correct: the left hand side is a graded commutative algebra,
while the right hand side is (in general) a non-commutative algebra.

What is the correct translation of Le and Zhou’s result to the non-commutative case? What
techniques does it involve? Here we will attempt to address some of these questions.

2 Hochschild cohomology

Definition 1. Let A be a k-algebra (our algebras are unital and associative, over a field k.
We can also work over a ring k, but things will change substantially. We define the Hochschild
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cohomology as): HHn(A) = ExtnAe(A,A) where Ae = A ⊗ Aop (is called the enveloping algebra
of A).

This is a rather clean definition, where the fact that k is a field is heavily used. However
when doing computations, defining operations, and proving properties about the Hochschild
cohomology, it is useful and common to pick a projective resolution. A common one (and
historically relevant) is the bar resolution.

Definition 2. For any n ∈ N, consider A⊗(n+2) as an Ae-module (by multiplication on the
outermost factors) and the sequence:

· · · d3−→ A⊗4
d2−→ A⊗3

d1−→ A⊗A µA−→ A

with

dn(a0 ⊗ · · · ⊗ an+1) =

n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · an+1

for all a0, . . . , an+1 ∈ A. This is (called) the (augmented) bar resolution of A.

When working with a special algebra or family of algebras, they frequently have a special
resolution that are more convenient to use. For example if A is Koszul we can use the Koszul
resolution, or if A is a complete intersection we can use finite free resolutions.

Definition 3. HH∗(A) comes with two operations (natively defined on the cochains of the bar
resolution):

^ : HHm(A)×HHn(A) −→ HHm+n(A),

[−,−] : HHm(A)×HHn(A) −→ HHm+n−1(A).

We call ^ the cup product and [−,−] the Gerstenhaber bracket. The cup product gives
(HH∗(A),^) the structure of a graded commutative algebra. The Gerstenhaber bracket gives
(HH∗(A), [−,−]) the structure of a graded Lie algebra. Together with some compatibility con-
ditions, they give (HH∗(A),^, [−,−]) the structure of a Gerstenhaber algebra, also known as
Poisson 2-algebra, or a Poisson algebra with Poisson bracket of degree −1.

To fix ideas, this last structure can be thought of as a graded Lie algebra coming from an
associative algebra. There are some key differences, since to be precise the degree of HH∗(A)
with respect to [−,−] (also called the Lie degree) is one less than the degree of HH∗(A) with
respect to ^ (also called the homological degree).

Example 4. To see what information does Hochschild cohomology encode, we can manually
compute its lower degrees.

• Degree 0: we have HH0(A) = ker(d∗1), so pick any α ∈ homAe(A ⊗ A,A) also in ker(d∗1),
we have for all a ∈ A:

0 = d∗1(α)(1⊗ a⊗ 1) = α(d1(1⊗ α⊗ 1)) = α(a⊗ 1− 1⊗ a) = aα(1⊗ 1)− α(1⊗ 1)a

Notice that since α is determined by its value α(1 ⊗ 1) ∈ A, this is enough. Conversely,
any element of the algebra A defines a function in homAe(A⊗ A,A), and additionally for
all z ∈ Z(A) and a, b ∈ A setting αz(a⊗ b) = azc gives a function αz ∈ homAe(A⊗ A,A)
also in ker(d∗1). Thus as k-modules we have that HH0(A) ∼= Z(A).
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• Degree 1: we have HH1(A) = ker(d∗2)/ im(d∗1). Doing an analogous analysis to the above,
we obtain that as k-modules ker(d∗2) ∼= Der(A,A) the space of k-derivations from A to A,
im(d∗1) ∼= InnDer(A,A) the space of inner k-derivations from A to A. Hence as a k-module
HH1(A) ∼= OutDer(A,A) the space of outer k-derivations from A to A.

• Degree 2: we have HH2(A) = ker(d∗3)/ im(d∗2). Doing a similar analysis as done above,
we obtain that as k-modules ker(d∗3) are the infinitesimal deformations of A, and im(d∗2)
are the infinitesimal deformations of A that give an algebra isomorphic to the original A.
Hence we can think of HH2(A) as encoding the “important” infinitesimal deformations. I
will not define what an infinitesimal deformation is, but the name is quite suggestive.

This hints at HH∗(A) encoding algebraically some form of infinitesimal information of A.
Notice how the above computations rely heavily on inside knowledge of the resolution being
used. We can now revisit Le and Zhou’s result.

Theorem 5 (Le-Zhou 2014). Let A and B be k-algebras, at least one of them finite dimensional.
Then (as Gerstenhaber algebras):

HH∗(A⊗B) ∼= HH∗(A)⊗HH∗(B).

This was proven by working over the bar resolution and using the cumbersome Alexander-
Whitney and Eilenberg-Zilber maps.

3 Twisted tensor product of algebras

Definition 6. Let A and B be k-algebras, a twisting map τ : B ⊗ A → A ⊗ B is a bijective
k-linear map (with the conditions τ(1B ⊗ a) = a⊗ 1B, τ(b⊗ 1A) = 1A ⊗ b for all a ∈ A, b ∈ B,
and:

τ ◦ (mB ⊗mA) = (mA ⊗mB) ◦ (1⊗ τ ⊗ 1) ◦ (τ ⊗ τ) ◦ (1⊗ τ ⊗ 1)

meaning that twisting and multiplication “commute”. Equivalently

B ⊗B ⊗A⊗A B ⊗A⊗B ⊗A A⊗B ⊗A⊗B

B ⊗A A⊗B A⊗A⊗B ⊗B

1⊗τ⊗1

mB⊗mA

τ⊗τ

1⊗τ⊗1

τ mA⊗mB

is a commutative diagram). The twisted tensor algebra A⊗τ B is A⊗B (as a vector space) with
(as it turns out associative) multiplication:

mA⊗τB : A⊗B ⊗A⊗B A⊗A⊗B ⊗B A⊗B.1⊗τ⊗1 mA⊗mB

Of course, the idea of working with HH∗(A⊗τ B) is not to treat A⊗τ B as a given algebra,
but to use some information about A and B that is already known. For example, if we have
tailored resolutions to specific algebras. Teorem 7 allows computing the Gerstenhaber bracket in
the Hochschild cohomology of a twisted tensor product A ⊗τ B, a notoriously difficult task, as
long as we know the Gerstenhaber bracket in the respective Hochschild cohomologies of A and
B. This has applications in, for example, deformations of algebras.
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Theorem 7 (KMOOW). Let P → A, Q → B (projective bimodule resolutions of A, B re-
spectively) such that P ⊗τ Q → A ⊗τ B is nice (a counital differential graded coalgebra) and
σ : (P ⊗τ Q)⊗A⊗τB (P ⊗τ Q)→ (P ⊗A P )⊗τ (Q⊗BQ) is (also) nice (a chain map isomorphism
satisfying some technical conditions). Then the (Gerstenhaber) bracket (is given) explicitly.

The tools used to prove Theorem 7 are constructions of resolutions given by Shepler and
Witherspoon, and homotopy lifting techniques by Negron and Witherspoon which essentially
remain a black box. Volkov generalized this black box to a tool that can always be applied to
any resolution, that does not require inside knowledge of the specifics of the resolution, and that
induces the Gerstenhaber bracket in cohomology! This is absolutely fantastic.

Theorem 8 (Shepler-Witherspoon 2019). Under some compatibility conditions, given P → A,
Q → B (projective bimodule resolutions of A, B respectively, and a twisting map τ : B ⊗ A →
A⊗B), we can construct P ⊗τ Q→ A⊗τ B (a projective bimodule resolution of A⊗τ B).

Definition 9 (Volkov 2016). (Given A a k-algebra,) let µP : P → A be a resolution of A-
bimodules, ∆P : P → P ⊗A P a diagonal map, and α ∈ homAe(Pm, A) a cocycle. A homotopy
lifting (of α with respect to ∆P ) is (an A-bimodule chain homomorphism) ψα : P → P [1 −m]
satisfying (some very) technical conditions (depending only on the augmentation map µP , the
diagonal map ∆P , and the cocycle α:

d(ψα) = (α⊗ 1P − 1P ⊗ α)∆P , and µPψα is cohomologous to (−1)m−1αψ

for some A-bimodule chain map ψ : P → P [1] for which d(ψ) = (µP ⊗ 1P − 1P ⊗ µP )∆P ).

Theorem 10 (Volkov 2016). The bracket (given at the chain level by):

[α, β] = αψβ − (−1)(m−1)(n−1)βψα

induces the Gerstenhaber bracket (on Hochschild cohomology).

Sometimes, we can do more than compute the Gerstenhaber bracket.

Example 11. Let A, B be k-algebras graded by the commutative groups F , G respectively, let
t : F ⊗Z G → k× be a bicharacter. Then τ(b⊗ a) = t(|a|, |b|)a⊗ b is a twisting map, we denote
A⊗t B = A⊗τ B. It can be checked that HH∗(−) is bigraded: HH∗,∗(−). We denote:

F ′ =
⋂
g∈G

ker(t(−, g)), G′ =
⋂
f∈F

ker(t(f,−)).

Theorem 12 (Grimley-Nguyen-Witherspoon 2017, OOW). As Gerstenhaber algebras (in the
twisted tensor product setup, and assuming the necessary finiteness conditions, we have):

HH∗,F
′⊕G′

(A⊗t B) ∼= HH∗,F
′
(A)⊗HH∗,G

′
(B).

Proof. (The original proof used extended versions of the Alexander-Whitney and Eilenberg-Zilber
maps. We completely avoided them by using) Volkov’s homotopy lifting (techniques, as well as
a chain isomorphism similar to the aforementioned σ, and a bit of work with the Koszul sign
convention).
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4 Applications and future work

We proved that when τ is strongly graded, and both A and B are Koszul algebras, then we can
construct a σ satisfying the compatibility conditions of Theorem 8 with respect to the Koszul
resolutions of A and B. In turn, this then helps to prove that such σ for Koszul algebras satisfies
the conditions of Theorem 7.

The Jordan plane: k〈x, y〉/(yx−xy−x2) can be seen as k[x]⊗τ k[y] for τ(y⊗x) = x⊗y+x2⊗1.
However, this τ is not strongly graded. We can nonetheless manually find a similar σ satisfying
the conditions of Theorem 7, and find the explicit Gerstenhaber algebra structure. This poses the
question of what conditions over τ are “good enough” to guarantee the compatibility conditions
of Theorem 8, that is, how can we relax the strongly graded condition for τ .

In [GNW] they computed the Gerstenhaber algebra structure of the quantum complete in-
tersections Λq = k〈x, y〉/(x2, y2, xy + qyx) for q ∈ k× using the techniques they developed to
prove Theorem 12. They found that in many cases HH1(Λq) is a finite dimensional abelian Lie
algebra over which HH∗(Λq) is a module (the generators being common eigenvectors). One of the
exceptions was q = 1 and char(k) 6= 2, where HH1(Λ1) is isomorphic to the Lie algebra gl2(k).
It still acts on HH∗(Λ1), but in a more complicated way.

The complete Gerstenhaber algebra structure of the Jordan plane was first computed by Lopes
and Solotar, using spectral sequences and a lot of machinery. Our computations in [KMOOW]
used more elementary and completely different methods, enabled by Volkov’s homotopy lifting
techniques. These seem to be the way of tackling this type of problems, and they should enable
elementary computations of examples like Λq.

Thank you for your time!
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