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(7,-) finite homotopy type

A space X is of finite homotopy type if:
m |my(X,Xx)| < oo forn > o0andx € X; and,
m m,(X,x) =0 forn>>o.

Homotopy cardinality

#(-) : {Finite homotopy types} — Q
Characterized by:
mAH() =1
m If X ~ Y then #X = #Y;
B #(XIY) = #X+ #Y; and,
m #E = #F - #B for fibration F— E -+ B with B connected
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Eilenberg-MacLane spaces

X = K(A,n) for |A| < cc.
#BA = |A|7" since A~ EA -» BA
= #K(A,n) = #B"(A) = |A|=

Homotopy quotients

G a finite group and X finite homotopy type with G-action
XX [ G»BG so#(X [ G) ==

Mapping spaces

M CW complex with finitely many cells and X finite homotopy type
Map (M, X) is a finite homotopy type
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HOMOTOPY CARDINALITY FORMULA

Postnikov tower

Tower of fibrations X —--- = X, = X; with:
m m,(Xz) = oforn > R, i.e, X is a k-type; and,
m X — Xg IS @ mp-iso.

Observe: Fibres of X, — X,_, are K (m(X, x), R)

Cardinality formula
#x= > [[ImXxx)

XEWQ(X) n=1




Pullback formula
For homotopy pullback squares

XxgY—=Y
U A
XT>B

one has

#(XxpY)= > #Bp#(f'(b)#(g7'(b))

bemo(B)

where By, is the connected component of b € 7o (B).



DIJKGRAAF-WITTEN INVARIANTS

Original DW invariants

M a compact 3-manifold and G a finite group

DW(M) = #Map (M,BG) = [ #Hom (m(M,m),G) /G
méemo (M)




DIJKGRAAF-WITTEN INVARIANTS

Original DW invariants

M a compact 3-manifold and G a finite group

DW(M) = #Map (M,BG) = [ #Hom (m(M,m),G) /G
méemo (M)

Geometric interpretation

Enumerates G-bundles on M since Bung(M) = Map(M, BG)

#Bung(M) = Y |Au:(P)|
P—M
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DIJKGRAAF-WITTEN INVARIANTS
Higher invariants

Let M be a compact d-manifold and X a finite homotopy type
DWx(M) = #Map (M, X)

Special case: n-groups

m G an (n — 1)-type with E;-structure. BS is a connected n-type
m X a connected n-type < X ~ BG
B DWg(M) := DWpgg(M) enumerates G-bundles on M

- 6|



DW TFT: TWO PERSPECTIVES

Cutting and gluing
N1 md Map (M, X) — Map (Ms, X)
o[ [ » |
M3 md Map (M,, X) — Map (N, X)

Pullback formula = cutting and gluing formula for DWy
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DW TFT: TWO PERSPECTIVES

Cutting and gluing

N1 md Map (M, X) — Map (M5, X)
ol [ - ] |
M3 md Map (M,, X) — Map (N, X)

Pullback formula = cutting and gluing formula for DWy

Extended functorial field theory

Map(—,X .
Zx : Bordg g—1d—2 L>)8pan2 8fin _£9¢ , rincat

DWy is the partition function of Zy.
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2-TYPES AND CROSSED MODULES

Connected 2-types

X a CW complex, connected 2-type
0 — m(X) — ma (X, X(0) Ly (X)) — 0(X) — 1
9 and action of m; (X™) on 7, (X,X() determine X up to

homotopy
9 m (X, X)) — 7, (X(V) is a crossed module

Theorem[Noohi, 2007]

Crossed modules completely describe connected 2-types and
their mapping spaces
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Automorphism crossed module

I a finite group

0 Z(T) — T ¥ Aut(I) —s Out(l) — 1

Corresponding 2-type Byl is classifying space for '-gerbes




EXAMPLE: FINITE GERBES

Automorphism crossed module

I a finite group
0 Z(T) — T ¥ Aut(I) —s Out(l) — 1

Corresponding 2-type Byl is classifying space for '-gerbes

Mapping spaces out of 1-types
Homotopy groups of Map (BG, Bgl'):

lwo:{1%r%f%Gﬁ1}/equiv;

m m, at [ is automorphism group of the extension
m 7, is always Z(I).




HIGHER DW INVARIANTS FROM HEEGAARD SPLITTINGS

Heegaard splitting

<9 H, Every closed, orientable 3-manifold M3 obtained as
9 l pushout with:

m Y ~ #9S" x S" orientable surface of genus g
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HIGHER DW INVARIANTS FROM HEEGAARD SPLITTINGS
Heegaard splitting

<9 H, Every closed, orientable 3-manifold M3 obtained as
9 l pushout with:

m Y ~ #9S" x S" orientable surface of genus g
m H; ~ 195" x D? bounding handlebodies

Computing DW invariants

m Pullback formula = DWx(M) computed from Map(X, X) and
Map(HiaX)
m When g > 0, ¥ and H; are 1-types

m DWg, (M) computed using extensions of surface groups and
free groups

HﬁHM




TRISECTIONS AND DW INVARIANTS

H,
H,— X,
AN
¢
Pﬁlw ZHHﬁ X3*>M4
/
i, H, — X3

Trisections [Gay-Kirby]

Every closed, oriented 4-manifold M* obtained as pushout cube
with X; ~ (*S? x D3




TRISECTIONS AND DW INVARIANTS

H,
H,— X,
AN
N\
Pﬁlw ZHHﬁ X3*>M4
/
i, H, — X3

Trisections [Gay-Kirby]

Every closed, oriented 4-manifold M* obtained as pushout cube
with X; ~ (*S? x D3

Higher DW invariants

M* iterated pushout of 1-types
= DWg,r(M) computed in terms of extensions




(2-) KNOT INVARIANTS

Bridge splittings / trisections

Given X : S" — M3 and Heegaard splitting of M3
Generically, X N = {points} and K N H; = trivial tangle
= bridge splitting of M3\ K
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(2-) KNOT INVARIANTS

Bridge splittings / trisections

Given X : S" — M3 and Heegaard splitting of M3
Generically, X N = {points} and K N H; = trivial tangle
= bridge splitting of M3\ K

Meier-Zupan: Bridge trisections for knotted surfaces in M*

Asphericity of (2-) knots

Papakyriokopolous: E(X) = S3\ K is a K(Gx, 1)

Conjecture [Lomonaco]

For K, X’ : §? — S%, if E(X) and E(X’) have same 2-type then they
are homotopic

Upshot: DW invariants for gerbes / 2-types possibly interesting
for 2-knots
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ASIDE ON CLASSIFICATION OF 2-KNOTS

Classification of knots

Peripheral system: 7 (OE(X) — E(X)) : vxc — Gy, vy ~ Z2
Theorem: (Gx, vx) is a complete isotopy invariant

m Aphericity: (Gx, vi) iSO
< Exteriors homotopic rel bndry
m Waldhausen: < diffeomorphic

m Gordon-Luecke: < knots isotopic

None of this is true for 2-knots!
m Exteriors are not K(Gy,1)’s
m Homotopic = homeomorphic » diffeomorphic




TORSION INVARIANTS

(C,g) € Ch&, C; equipped with inner product g;

Analytic torsion of (C, g)

Laplacian: A : C — C, A = dd* + d*d
Orthogonal decomposition: C = Ker(A) & Im(d) @ Im(d*) and
H(C) = Ker(A)

T(C,g)* :=det (A") = [ det (ah)

neZ
where A" = Alyc)e




RAY-SINGER TORSION

(M, g) closed manifold with Riemannian metric
(E, V) vector bundle with (orthogonal) flat connection

Torsion of (M, V)

Laplacian: A = dV(dV)* + (dV)*dV
Hodge decomposition: Q(M; E) = Ker(A) @ Im(dV) @ Im((dV)*)
and HdR(M) = Ker(A)

T(M; V)2 = [ detc (A7)
neZ

where det,: regularized determinant using ¢a,(s) = TrA;”

Remark: Independent of Riemannian metric




SPECIAL CASE: RANK 2 BUNDLES

Torsion for rank 2 bundles

Torsion function: 7y = T(M; —) : {Flat connections} — R
Holonomy: {Flat connections} <> {H,(M) — U(1)}



SPECIAL CASE: RANK 2 BUNDLES

Torsion for rank 2 bundles

Torsion function: 7y = T(M; —) : {Flat connections} — R
Holonomy: {Flat connections} <> {H,(M) — U(1)}

Cheeger-Mueller Theorem

m 7y € Frac(Z[H4(M)]); and,
m 7y agrees with the Reidemeister torsion




SPECIAL CASE: RANK 2 BUNDLES

Reidemeister torsion for CW complexes

M — M maximal abelian cover. Lift CW structure from M
Combinatorial torsion of CSW (M) as Frac (Z[H,(M)])-module




SPECIAL CASE: RANK 2 BUNDLES

Reidemeister torsion for CW complexes

M — M maximal abelian cover. Lift CW structure from M
Combinatorial torsion of CSW (M) as Frac (Z[H,(M)])-module

Torsion of knots

H1(E(X)) = Z 50 7¢(x) € Q(t)
Proportional to the Alexander polynomial




SPECIAL CASE: RANK 2 BUNDLES

Reidemeister torsion for CW complexes

M — M maximal abelian cover. Lift CW structure from M
Combinatorial torsion of CSW (M) as Frac (Z[H,(M)])-module

Torsion of knots

H1(E(X)) = Z 50 7¢(x) € Q(t)
Proportional to the Alexander polynomial

Torsion of higher knots

H4(E(X)) = Zforall X : S" — S"+2
Alternating product of higher Alexander polynomials




PATH INTEGRALS 101

Gaussian integrals

A € Mp(R) symmetric, positive definite

/ o HoxAx) _
XERN

(2m)"
det(A)




PATH INTEGRALS 101

Gaussian integrals

A € Mp(R) symmetric, positive definite

/ o—tixax) _ [ (2m)"
XERN det(A)

“Free” field theories, basic case

(M, g) Riemannian manifold, E vector bundle
A :T(M;E) — I'(M; E) differential operator

1 1
Z(M :/ e 29(VAY) .
(M) Ver(m:e) det¢(A)

N
o



BF INVARIANT

Birmingham-Blau-Rakowski-Thompson ansatz

M(M¢; E) moduli space of orthogonal flat connections

2(MY;E) = / T(M; V)™
VeEM(M;E)

is the BF invariant for (M%; E)




BF INVARIANT
Birmingham-Blau-Rakowski-Thompson ansatz

M(M¢; E) moduli space of orthogonal flat connections

2(MY;E) = / T(M; V)"
VeEM(M;E)

is the BF invariant for (M%; E)

m For Rank(E) = n, M(M; E) is derived manifold
Hom (m,(M), SO(n)) / SO(n)
» Unclear (to me) how to integrate

m Suggests that codim-2 operators ~ torsion polynomials
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FINAL REMARKS
Cattaneo et al: 3D BF theory

Line operators in rank 2 give Alexander polynomial

Better understanding of 4D BF theory

m Baez: BF + ‘cosmological constant’ = Crane-Yetter for RepUgg
» Deformation of torsion polynomials of 2-knots?
» Ben-Zvi-Brochier-Gunningham-Jordan-Safronov-Snyder:
Factorization homology techniques

m Ben-Zvi-Nadler: Betti geometric Langlands

Thank you!

20/ 20



