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Homotopy cardinality

(π∗-) �nite homotopy type
A space X is of �nite homotopy type if:
|πn(X, x)| <∞ for n ≥ 0 and x ∈ X; and,
πn(X, x) = 0 for n >> 0.

Homotopy cardinality
#(·) : {Finite homotopy types} → Q
Characterized by:

#(∗) = 1;
If X ∼ Y then #X = #Y;
# (X q Y) = #X + #Y; and,
#E = #F ·#B for �bration F �

�
// E // // B with B connected

1 20



Homotopy cardinality

(π∗-) �nite homotopy type
A space X is of �nite homotopy type if:
|πn(X, x)| <∞ for n ≥ 0 and x ∈ X; and,
πn(X, x) = 0 for n >> 0.

Homotopy cardinality
#(·) : {Finite homotopy types} → Q
Characterized by:

#(∗) = 1;
If X ∼ Y then #X = #Y;
# (X q Y) = #X + #Y; and,
#E = #F ·#B for �bration F �

�
// E // // B with B connected

1 20



Examples of finite homotopy types

Eilenberg-MacLane spaces
X = K(A,n) for |A| <∞.

#BA = |A|−1 since A �
�
// EA // // BA

⇒ #K(A,n) = #Bn(A) = |A|(−1)n

Homotopy quotients
G a �nite group and X �nite homotopy type with G-action
X �
�
// X // G // // BG so # (X // G) = #X

|G|

Mapping spaces
M CW complex with �nitely many cells and X �nite homotopy type
Map (M, X) is a �nite homotopy type
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Homotopy cardinality formula

Postnikov tower
Tower of �brations X // · · · // // X2 // // X1 with:

πn(Xk) = 0 for n > k, i.e., Xk is a k-type; and,
X → Xk is a π≤k-iso.

Observe: Fibres of Xk � Xk−1 are K (πk(X, x), k)

Cardinality formula

#X =
∑

x∈π0(X)

∞∏
n=1
|πn(X, x)|(−1)

n
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Pullback formula
For homotopy pullback squares

X ×B Y //

��

Y
f ��

X g
// B

one has

# (X ×B Y) =
∑

b∈π0(B)

#Bb#(f−1(b))#(g−1(b))

where Bb is the connected component of b ∈ π0(B).

4 20



Dijkgraaf–Witten invariants

Original DW invariants
M a compact 3-manifold and G a �nite group

DWG(M) = #Map (M,BG) =
∏

m∈π0(M)

#Hom (π1(M,m),G) // G

Geometric interpretation
Enumerates G-bundles on M since BunG(M) = Map(M,BG)

#BunG(M) =
∑
P→M

1
|Aut(P)|

5 20
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Dijkgraaf–Witten invariants

Higher invariants
Let M be a compact d-manifold and X a �nite homotopy type
DWX(M) = #Map (M, X)

Special case: n-groups

G an (n− 1)-type with E1-structure. BG is a connected n-type
X a connected n-type⇔ X ∼ BG
DWG(M) := DWBG(M) enumerates G-bundles on M
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DW TFT: Two perspectives

Cutting and gluing

Nd−1� _
∂
��

� � ∂ // Md
1� _

��

Map (M, X)

��

//Map (M1, X)

��
7→

Md
2
� � // Md Map (M2, X) //Map (N, X)

Pullback formula⇒ cutting and gluing formula for DWX

Extended functorial �eld theory

ZX : Bordd,d−1,d−2
Map(−,X)

// Span2 Sfin
Loc // Lincat

DWX is the partition function of ZX.
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2-types and crossed modules

Connected 2-types
X a CW complex, connected 2-type

0 // π2(X) // π2
(
X, X(1)) ∂ // π1

(
X(1)) // π1(X) // 1

∂ and action of π1
(
X(1)) on π2 (X, X(1)) determine X up to

homotopy

∂ : π2
(
X, X(1))→ π1

(
X(1)) is a crossed module

Theorem[Noohi, 2007]
Crossed modules completely describe connected 2-types and
their mapping spaces

8 20



2-types and crossed modules

Connected 2-types
X a CW complex, connected 2-type

0 // π2(X) // π2
(
X, X(1)) ∂ // π1

(
X(1)) // π1(X) // 1

∂ and action of π1
(
X(1)) on π2 (X, X(1)) determine X up to

homotopy
∂ : π2

(
X, X(1))→ π1

(
X(1)) is a crossed module

Theorem[Noohi, 2007]
Crossed modules completely describe connected 2-types and
their mapping spaces

8 20



2-types and crossed modules

Connected 2-types
X a CW complex, connected 2-type

0 // π2(X) // π2
(
X, X(1)) ∂ // π1

(
X(1)) // π1(X) // 1

∂ and action of π1
(
X(1)) on π2 (X, X(1)) determine X up to

homotopy
∂ : π2

(
X, X(1))→ π1

(
X(1)) is a crossed module

Theorem[Noohi, 2007]
Crossed modules completely describe connected 2-types and
their mapping spaces

8 20



Example: Finite gerbes

Automorphism crossed module
Γ a �nite group

0 // Z(Γ) // Γ
Conj
// Aut(Γ) // Out(Γ) // 1

Corresponding 2-type BgΓ is classifying space for Γ-gerbes

Mapping spaces out of 1-types
Homotopy groups ofMap

(
BG,BgΓ

)
:

π0 '
{
1→ Γ→ Γ̂→ G→ 1

}
/equiv;

π1 at Γ̂ is automorphism group of the extension
π2 is always Z(Γ).

9 20
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Higher DW invariants from Heegaard splittings

Σ �
� ∂ //� _

∂
��

Hα

��

Hβ // M

Heegaard splitting
Every closed, orientable 3-manifold M3 obtained as
pushout with:

Σ ' ]gS1 × S1 orientable surface of genus g
Hi ' \gS1 × D2 bounding handlebodies

Computing DW invariants

Pullback formula⇒ DWX(M) computed fromMap(Σ, X) and
Map(Hi, X)

When g > 0, Σ and Hi are 1-types
DWBgΓ(M) computed using extensions of surface groups and
free groups
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Trisections and DW invariants

Hα //

��

X1

��

Σ

@@

//

��

Hβ

??

��

X3 // M4

Hγ

??

// X2

??

Trisections [Gay–Kirby]
Every closed, oriented 4-manifold M4 obtained as pushout cube
with Xi ' \kS1 × D3

Higher DW invariants
M4 iterated pushout of 1-types
⇒ DWBgΓ(M) computed in terms of extensions

11 20
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(2-) knot invariants

Bridge splittings / trisections
Given K : S1 ↪→ M3 and Heegaard splitting of M3
Generically, K ∩ Σ = {points} and K ∩ Hi = trivial tangle
⇒ bridge splitting of M3 \K

Meier–Zupan: Bridge trisections for knotted surfaces in M4

Asphericity of (2-) knots
Papakyriokopolous: E(K) = S3 \K is a K (GK, 1)
Conjecture [Lomonaco]
For K,K′ : S2 ↪→ S4, if E(K) and E(K′) have same 2-type then they
are homotopic

Upshot: DW invariants for gerbes / 2-types possibly interesting
for 2-knots
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Aside on classification of 2-knots

Classi�cation of knots
Peripheral system: π1 (∂E(K) ↪→ E(K)) : νK ↪→ GK, νK ' Z2

Theorem: (GK, νK) is a complete isotopy invariant

Aphericity: (GK, νK) iso
⇔ Exteriors homotopic rel bndry
Waldhausen:⇔ di�eomorphic
Gordon-Luecke:⇔ knots isotopic

None of this is true for 2-knots!
Exteriors are not K(GK, 1)’s
Homotopic; homeomorphic; di�eomorphic

13 20
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Torsion invariants

(C,g) ∈ ChbR, Ci equipped with inner product gi

Analytic torsion of (C,g)
Laplacian: ∆ : C → C, ∆ = dd∗ + d∗d
Orthogonal decomposition: C = Ker(∆)⊕ Im(d)⊕ Im(d∗) and
H(C) = Ker(∆)

T(C,g)2 := det
(
∆′
)

=
∏
n∈Z

det
(
∆′n
)(−1)nn

where ∆′ = ∆|H(C)⊥

14 20



Ray–Singer torsion

(M,g) closed manifold with Riemannian metric
(E,∇) vector bundle with (orthogonal) �at connection

Torsion of (M,∇)
Laplacian: ∆ = d∇(d∇)∗ + (d∇)∗d∇
Hodge decomposition: Ω(M; E) = Ker(∆)⊕ Im(d∇)⊕ Im((d∇)∗)
and HdR(M) = Ker(∆)

T(M;∇)2 =
∏
n∈Z

detζ
(
∆′n
)(−1)nn

where detζ : regularized determinant using ζ∆n(s) = Tr∆−sn

Remark: Independent of Riemannian metric

15 20



Special case: Rank 2 bundles

Torsion for rank 2 bundles
Torsion function: τM = T(M;−) : {Flat connections} → R
Holonomy: {Flat connections} ↔ {H1(M)→ U(1)}

Cheeger–Mueller Theorem

τM ∈ Frac (Z[H1(M)]); and,
τM agrees with the Reidemeister torsion

16 20
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Special case: Rank 2 bundles

Reidemeister torsion for CW complexes
M→ M maximal abelian cover. Lift CW structure from M
Combinatorial torsion of CCW∗

(
M
)
as Frac (Z[H1(M)])-module

Torsion of knots
H1(E(K)) = Z so τE(K) ∈ Q(t)
Proportional to the Alexander polynomial

Torsion of higher knots
H1(E(K)) = Z for all K : Sn ↪→ Sn+2

Alternating product of higher Alexander polynomials

17 20
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Path integrals 101

Gaussian integrals
A ∈ Mn(R) symmetric, positive de�nite∫

x∈Rn
e−

1
2 〈x,Ax〉 =

√
(2π)n

det(A)

“Free” �eld theories, basic case
(M,g) Riemannian manifold, E vector bundle
A : Γ(M; E)→ Γ(M; E) di�erential operator

Z(M) =

∫
V∈Γ(M;E)

e−
1
2g(V,AV) :=

√
1

detζ(A)
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BF invariant

Birmingham–Blau–Rakowski–Thompson ansatz
M(Md; E) moduli space of orthogonal �at connections

Z(Md; E) =

∫
∇∈M(M;E)

T(M;∇)−1

is the BF invariant for (Md; E)

Commentary

For Rank(E) = n,M(M; E) is derived manifold
Hom (π1(M), SO(n)) // SO(n)
I Unclear (to me) how to integrate

Suggests that codim-2 operators torsion polynomials
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Final remarks

Cattaneo et al: 3D BF theory
Line operators in rank 2 give Alexander polynomial

Better understanding of 4D BF theory

Baez: BF + ‘cosmological constant’ = Crane–Yetter for RepUqg
I Deformation of torsion polynomials of 2-knots?
I Ben-Zvi–Brochier–Gunningham–Jordan–Safronov–Snyder:
Factorization homology techniques

Ben-Zvi–Nadler: Betti geometric Langlands

Thank you!
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