TORSION AND HOMOTOPICAL INVARIANTS FROM TFTS

MARK PENNEY
JOINT W/ SERGEI GUKOV AND JEFF MEIER

MSRI HIGHER CATEGORIES PERIMETER INSITUTE UWATERLOO

7 MAY, 2020

HOMOTOPY CARDINALITY

$(\pi_*$ -) finite homotopy type

A space *X* is of finite homotopy type if:

- $\blacksquare |\pi_n(X,x)| < \infty \text{ for } n \geq 0 \text{ and } x \in X; \text{ and,}$
- \blacksquare $\pi_n(X, X) = o \text{ for } n >> o.$

HOMOTOPY CARDINALITY

$(\pi_*$ -) finite homotopy type

A space X is of finite homotopy type if:

- \blacksquare $|\pi_n(X,x)| < \infty$ for $n \ge 0$ and $x \in X$; and,
- \blacksquare $\pi_n(X, X) = 0$ for n >> 0.

Homotopy cardinality

 $\#(\cdot): \{\text{Finite homotopy types}\} \to \mathbb{Q}$ Characterized by:

- #(*)=1;
- If $X \sim Y$ then #X = #Y;
- \blacksquare # (X \coprod Y) = #X + #Y; and,
- $\#E = \#F \cdot \#B$ for fibration $F \hookrightarrow E \twoheadrightarrow B$ with B connected

Eilenberg-MacLane spaces

$$X = K(A, n)$$
 for $|A| < \infty$.

Eilenberg-MacLane spaces

$$X = K(A, n)$$
 for $|A| < \infty$.
 $\#BA = |A|^{-1}$ since $A \hookrightarrow EA \twoheadrightarrow BA$

Eilenberg-MacLane spaces

$$X = K(A, n)$$
 for $|A| < \infty$.
 $\#BA = |A|^{-1}$ since $A \hookrightarrow EA \twoheadrightarrow BA$
 $\Rightarrow \#K(A, n) = \#B^n(A) = |A|^{(-1)^n}$

Eilenberg-MacLane spaces

$$X = K(A, n)$$
 for $|A| < \infty$.
 $\#BA = |A|^{-1}$ since $A \hookrightarrow EA \twoheadrightarrow BA$
 $\Rightarrow \#K(A, n) = \#B^n(A) = |A|^{(-1)^n}$

Homotopy quotients

G a finite group and X finite homotopy type with G-action

Eilenberg-MacLane spaces

$$X = K(A, n)$$
 for $|A| < \infty$.
 $\#BA = |A|^{-1}$ since $A \hookrightarrow EA \twoheadrightarrow BA$
 $\Rightarrow \#K(A, n) = \#B^n(A) = |A|^{(-1)^n}$

Homotopy quotients

G a finite group and *X* finite homotopy type with *G*-action $X \hookrightarrow X /\!\!/ G \twoheadrightarrow BG$ so $\#(X /\!\!/ G) = \frac{\#X}{|G|}$

Eilenberg-MacLane spaces

$$X = K(A, n)$$
 for $|A| < \infty$.
 $\#BA = |A|^{-1}$ since $A \hookrightarrow EA \twoheadrightarrow BA$
 $\Rightarrow \#K(A, n) = \#B^n(A) = |A|^{(-1)^n}$

Homotopy quotients

G a finite group and *X* finite homotopy type with *G*-action $X \hookrightarrow X /\!\!/ G \twoheadrightarrow BG$ so $\#(X /\!\!/ G) = \frac{\#X}{|G|}$

Mapping spaces

M CW complex with finitely many cells and X finite homotopy type

Eilenberg-MacLane spaces

$$X = K(A, n)$$
 for $|A| < \infty$.
 $\#BA = |A|^{-1}$ since $A \hookrightarrow EA \twoheadrightarrow BA$
 $\Rightarrow \#K(A, n) = \#B^n(A) = |A|^{(-1)^n}$

Homotopy quotients

G a finite group and *X* finite homotopy type with *G*-action $X \hookrightarrow X /\!\!/ G \twoheadrightarrow BG$ so $\#(X /\!\!/ G) = \frac{\#X}{|G|}$

Mapping spaces

M CW complex with finitely many cells and X finite homotopy type $\operatorname{\mathfrak{M}ap}(M,X)$ is a finite homotopy type

HOMOTOPY CARDINALITY FORMULA

Postnikov tower

Tower of fibrations $X \rightarrow \cdots \twoheadrightarrow X_2 \twoheadrightarrow X_1$ with:

- \blacksquare $\pi_n(X_k) = \text{o for } n > k, \text{ i.e., } X_k \text{ is a } k\text{-type; and,}$
- $X \to X_k$ is a $\pi_{\leq k}$ -iso.

HOMOTOPY CARDINALITY FORMULA

Postnikov tower

- \blacksquare $\pi_n(X_k) = \text{o for } n > k, \text{ i.e., } X_k \text{ is a } k\text{-type; and,}$
- $X \rightarrow X_k$ is a $\pi_{\leq k}$ -iso.

Observe: Fibres of $X_k \rightarrow X_{k-1}$ are $K(\pi_k(X, X), k)$

Cardinality formula

$$\#X = \sum_{X \in \pi_0(X)} \prod_{n=1}^{\infty} |\pi_n(X, X)|^{(-1)^n}$$

Pullback formula

For homotopy pullback squares

$$\begin{array}{c} X\times_B Y \to Y \\ \downarrow \qquad f \downarrow \\ X \xrightarrow{g} B \end{array}$$

one has

$$\#(X \times_B Y) = \sum_{b \in \pi_0(B)} \#B_b \#(f^{-1}(b)) \#(g^{-1}(b))$$

where B_b is the connected component of $b \in \pi_0(B)$.

Original DW invariants

M a compact 3-manifold and G a finite group

$$\mathrm{DW}_{G}(M) = \# \mathrm{Map}\left(M, BG\right) = \prod_{m \in \pi_{O}(M)} \# \mathrm{Hom}\left(\pi_{1}(M, m), G\right) /\!\!/ G$$

Original DW invariants

M a compact 3-manifold and G a finite group

$$\mathrm{DW}_{G}(M) = \# \mathrm{Map}\left(M, BG\right) = \prod_{m \in \pi_{O}(M)} \# \mathrm{Hom}\left(\pi_{1}(M, m), G\right) /\!\!/ G$$

Geometric interpretation

Enumerates G-bundles on M since $\mathfrak{B}\mathrm{un}_G(M) = \mathfrak{M}\mathrm{ap}(M,BG)$

$$\# \mathfrak{B}\mathrm{un}_G(M) = \sum_{P \to M} \frac{1}{|\mathrm{Aut}(P)|}$$

Higher invariants

Let M be a compact d-manifold and X a finite homotopy type $\mathrm{DW}_X(M) = \# \mathrm{Map}\,(M,X)$

Higher invariants

Let M be a compact d-manifold and X a finite homotopy type $\mathrm{DW}_X(M) = \# \mathrm{Map}\,(M,X)$

Special case: n-groups

- \mathcal{G} an (n-1)-type with E_1 -structure. $B\mathcal{G}$ is a connected n-type
- X a connected n-type $\Leftrightarrow X \sim B\mathfrak{G}$
- lacksquare $\mathrm{DW}_{\mathfrak{G}}(M) := \mathrm{DW}_{B\mathfrak{G}}(M)$ enumerates \mathfrak{G} -bundles on M

DW TFT: Two perspectives

Cutting and gluing

$$\begin{array}{cccc} N^{d-1} \stackrel{\partial}{\longleftrightarrow} M_1^d & \operatorname{\mathfrak{M}ap} (M,X) \to \operatorname{\mathfrak{M}ap} (M_1,X) \\ \partial \int & \int & \mapsto & \int & \int \\ M_2^d \stackrel{\partial}{\longleftrightarrow} M^d & \operatorname{\mathfrak{M}ap} (M_2,X) \to \operatorname{\mathfrak{M}ap} (N,X) \end{array}$$

Pullback formula \Rightarrow cutting and gluing formula for DW_X

DW TFT: Two perspectives

Cutting and gluing

$$\begin{array}{cccc} N^{d-1} \stackrel{\partial}{\longleftrightarrow} M_1^d & \operatorname{\mathfrak{M}ap}(M,X) \to \operatorname{\mathfrak{M}ap}(M_1,X) \\ \downarrow & & \downarrow & \downarrow \\ M_2^d \stackrel{\partial}{\longleftrightarrow} M^d & \operatorname{\mathfrak{M}ap}(M_2,X) \to \operatorname{\mathfrak{M}ap}(N,X) \end{array}$$

Pullback formula \Rightarrow cutting and gluing formula for DW_X

Extended functorial field theory

$$\mathcal{Z}_X: \ \mathbb{B}\mathrm{ord}_{d,d-1,d-2} \xrightarrow{\mathbb{M}\mathrm{ap}(-,X)} \mathbb{S}\mathrm{pan}_2 \ \mathbb{S}^\mathrm{fin} \xrightarrow{\mathcal{L}\mathrm{oc}} \mathcal{L}\mathrm{incat}$$

 DW_X is the partition function of \mathcal{Z}_X .

2-TYPES AND CROSSED MODULES

Connected 2-types

X a CW complex, connected 2-type

$$0 \longrightarrow \pi_2(X) \longrightarrow \pi_2(X, X^{(1)}) \xrightarrow{\partial} \pi_1(X^{(1)}) \longrightarrow \pi_1(X) \longrightarrow 1$$

 ∂ and action of $\pi_1\left(X^{(1)}\right)$ on $\pi_2\left(X,X^{(1)}\right)$ determine X up to homotopy

2-TYPES AND CROSSED MODULES

Connected 2-types

X a CW complex, connected 2-type

$$0 \longrightarrow \pi_2(X) \longrightarrow \pi_2(X, X^{(1)}) \xrightarrow{\partial} \pi_1(X^{(1)}) \longrightarrow \pi_1(X) \longrightarrow 1$$

 ∂ and action of $\pi_1\left(X^{(1)}\right)$ on $\pi_2\left(X,X^{(1)}\right)$ determine X up to homotopy

 $\partial: \pi_2(X,X^{(1)}) \to \pi_1(X^{(1)})$ is a crossed module

2-TYPES AND CROSSED MODULES

Connected 2-types

X a CW complex, connected 2-type

$$0 \longrightarrow \pi_{2}(X) \longrightarrow \pi_{2}(X, X^{(1)}) \xrightarrow{\partial} \pi_{1}(X^{(1)}) \longrightarrow \pi_{1}(X) \longrightarrow 1$$

 ∂ and action of $\pi_1\left(X^{(1)}\right)$ on $\pi_2\left(X,X^{(1)}\right)$ determine X up to homotopy

 $\partial:\pi_{2}\left(X,X^{\left(1\right)}\right)
ightarrow\pi_{1}\left(X^{\left(1\right)}\right)$ is a crossed module

Theorem[Noohi, 2007]

Crossed modules completely describe connected 2-types and their mapping spaces

EXAMPLE: FINITE GERBES

Automorphism crossed module

Γ a finite group

$$0 \longrightarrow Z(\Gamma) \longrightarrow \Gamma \xrightarrow{\operatorname{Conj}} \operatorname{Aut}(\Gamma) \longrightarrow \operatorname{Out}(\Gamma) \longrightarrow 1$$

Corresponding 2-type $B_g\Gamma$ is classifying space for Γ -gerbes

EXAMPLE: FINITE GERBES

Automorphism crossed module

Γ a finite group

$$0 \longrightarrow Z(\Gamma) \longrightarrow \Gamma \stackrel{\operatorname{Conj}}{\longrightarrow} \operatorname{Aut}(\Gamma) \longrightarrow \operatorname{Out}(\Gamma) \longrightarrow 1$$

Corresponding 2-type $B_g\Gamma$ is classifying space for Γ -gerbes

Mapping spaces out of 1-types

Homotopy groups of $Map(BG, B_g\Gamma)$:

- \blacksquare $\pi_0 \simeq \left\{ 1 \to \Gamma \to \hat{\Gamma} \to G \to 1 \right\} / \text{equiv};$
- \blacksquare π_1 at $\hat{\Gamma}$ is automorphism group of the extension
- π_2 is always $Z(\Gamma)$.

HIGHER DW INVARIANTS FROM HEEGAARD SPLITTINGS

Heegaard splitting

Every closed, orientable 3-manifold M^3 obtained as pushout with:

- lacksquare $\Sigma \simeq \sharp^g S^1 \times S^1$ orientable surface of genus g
- $H_i \simeq \sharp^g S^1 \times D^2$ bounding handlebodies

HIGHER DW INVARIANTS FROM HEEGAARD SPLITTINGS

Heegaard splitting

Every closed, orientable 3-manifold M^3 obtained as pushout with:

- $\Sigma \simeq \sharp^g S^1 \times S^1$ orientable surface of genus g
- $H_i \simeq \sharp^g S^1 \times D^2$ bounding handlebodies

Computing DW invariants

- Pullback formula $\Rightarrow \mathrm{DW}_X(M)$ computed from $\mathrm{Map}(\Sigma,X)$ and $\mathrm{Map}(H_i,X)$
- When g > o, Σ and H_i are 1-types
- $DW_{B_g\Gamma}(M)$ computed using extensions of surface groups and free groups

TRISECTIONS AND DW INVARIANTS

Trisections [Gay-Kirby]

Every closed, oriented 4-manifold M^4 obtained as pushout cube with $X_i \simeq \sharp^k S^1 \times D^3$

TRISECTIONS AND DW INVARIANTS

Trisections [Gay-Kirby]

Every closed, oriented 4-manifold M^4 obtained as pushout cube with $X_i \simeq \mathbb{P}^k S^1 \times D^3$

Higher DW invariants

M⁴ iterated pushout of 1-types

 $\Rightarrow DW_{B_0\Gamma}(M)$ computed in terms of extensions

Bridge splittings / trisections

Given $\mathcal{K}: S^1 \hookrightarrow M^3$ and Heegaard splitting of M^3 Generically, $\mathcal{K} \cap \Sigma = \{\text{points}\}\$ and $K \cap H_i = \text{trivial tangle} \Rightarrow \text{bridge splitting of } M^3 \setminus \mathcal{K}$

Bridge splittings / trisections

Given $\mathcal{K}: S^1 \hookrightarrow M^3$ and Heegaard splitting of M^3 Generically, $\mathcal{K} \cap \Sigma = \{\text{points}\}\$ and $K \cap H_i = \text{trivial tangle} \Rightarrow \text{bridge splitting of } M^3 \setminus \mathcal{K}$

Meier-Zupan: Bridge trisections for knotted surfaces in M⁴

Bridge splittings / trisections

Given $\mathcal{K}: S^1 \hookrightarrow M^3$ and Heegaard splitting of M^3 Generically, $\mathcal{K} \cap \Sigma = \{\text{points}\}\$ and $K \cap H_i = \text{trivial tangle} \Rightarrow \text{bridge splitting of } M^3 \setminus \mathcal{K}$

Meier–Zupan: Bridge trisections for knotted surfaces in M⁴

Asphericity of (2-) knots

Papakyriokopolous: $E(\mathcal{K}) = S^3 \setminus \mathcal{K}$ is a $K(G_{\mathcal{K}}, 1)$

Bridge splittings / trisections

Given $\mathcal{K}: S^1 \hookrightarrow M^3$ and Heegaard splitting of M^3 Generically, $\mathcal{K} \cap \Sigma = \{\text{points}\}\$ and $K \cap H_i = \text{trivial tangle}$

 \Rightarrow bridge splitting of $M^3 \setminus \mathcal{K}$

Meier–Zupan: Bridge trisections for knotted surfaces in M⁴

Asphericity of (2-) knots

Papakyriokopolous: $E(\mathfrak{K}) = S^3 \setminus \mathfrak{K}$ is a $K(G_{\mathfrak{K}}, 1)$

Conjecture [Lomonaco]

For $\mathcal{K}, \mathcal{K}': S^2 \hookrightarrow S^4$, if $E(\mathcal{K})$ and $E(\mathcal{K}')$ have same 2-type then they are homotopic

Bridge splittings / trisections

Given $\mathcal{K}: S^1 \hookrightarrow M^3$ and Heegaard splitting of M^3

Generically, $\mathcal{K} \cap \Sigma = \{\text{points}\}\$ and $K \cap H_i = \text{trivial tangle}$

 \Rightarrow bridge splitting of $M^3 \setminus \mathcal{K}$

Meier–Zupan: Bridge trisections for knotted surfaces in M⁴

Asphericity of (2-) knots

Papakyriokopolous: $E(\mathfrak{K}) = S^3 \setminus \mathfrak{K}$ is a $K(G_{\mathfrak{K}}, 1)$

Conjecture [Lomonaco]

For $\mathcal{K}, \mathcal{K}': S^2 \hookrightarrow S^4$, if $E(\mathcal{K})$ and $E(\mathcal{K}')$ have same 2-type then they are homotopic

Upshot: DW invariants for gerbes / 2-types possibly interesting for 2-knots

ASIDE ON CLASSIFICATION OF 2-KNOTS

Classification of knots

Peripheral system: $\pi_1(\partial E(\mathcal{K}) \hookrightarrow E(\mathcal{K})) : \nu_{\mathcal{K}} \hookrightarrow G_{\mathcal{K}}, \nu_{\mathcal{K}} \simeq \mathbb{Z}^2$

Theorem: $(G_{\mathcal{K}}, \nu_{\mathcal{K}})$ is a complete isotopy invariant

ASIDE ON CLASSIFICATION OF 2-KNOTS

Classification of knots

Peripheral system: $\pi_1(\partial E(\mathfrak{K}) \hookrightarrow E(\mathfrak{K})) : \nu_{\mathfrak{K}} \hookrightarrow G_{\mathfrak{K}}, \nu_{\mathfrak{K}} \simeq \mathbb{Z}^2$ Theorem: $(G_{\mathfrak{K}}, \nu_{\mathfrak{K}})$ is a complete isotopy invariant

- Aphericity: $(G_{\mathcal{K}}, \nu_{\mathcal{K}})$ iso \Leftrightarrow Exteriors homotopic rel bndry
- Waldhausen: ⇔ diffeomorphic
- Gordon-Luecke: ⇔ knots isotopic

ASIDE ON CLASSIFICATION OF 2-KNOTS

Classification of knots

Peripheral system: $\pi_1(\partial E(\mathfrak{K}) \hookrightarrow E(\mathfrak{K})) : \nu_{\mathfrak{K}} \hookrightarrow G_{\mathfrak{K}}, \nu_{\mathfrak{K}} \simeq \mathbb{Z}^2$ Theorem: $(G_{\mathfrak{K}}, \nu_{\mathfrak{K}})$ is a complete isotopy invariant

- Aphericity: $(G_{\mathcal{K}}, \nu_{\mathcal{K}})$ iso \Leftrightarrow Exteriors homotopic rel bndry
- Waldhausen: ⇔ diffeomorphic
- Gordon-Luecke: ⇔ knots isotopic

None of this is true for 2-knots!

- Exteriors are not $K(G_{\mathcal{K}}, 1)$'s
- Homotopic ⇒ homeomorphic ⇒ diffeomorphic

TORSION INVARIANTS

 $(C,g)\in\operatorname{Ch}_{\mathbb{R}}^{\operatorname{b}}$, C_i equipped with inner product g_i

Analytic torsion of (C, q)

Laplacian: $\Delta: C \to C$, $\Delta = dd^* + d^*d$ Orthogonal decomposition: $C = \operatorname{Ker}(\Delta) \oplus \operatorname{Im}(d) \oplus \operatorname{Im}(d^*)$ and $H(C) = \operatorname{Ker}(\Delta)$

$$T(C,g)^2 := \det \left(\Delta'\right) = \prod_{n \in \mathbb{Z}} \det \left(\Delta'_n\right)^{(-1)^n n}$$

where $\Delta' = \Delta|_{H(C)^{\perp}}$

RAY-SINGER TORSION

(M,g) closed manifold with Riemannian metric (E,∇) vector bundle with (orthogonal) flat connection

Torsion of (M, ∇)

Laplacian: $\Delta = d^{\nabla}(d^{\nabla})^* + (d^{\nabla})^*d^{\nabla}$ Hodge decomposition: $\Omega(M; E) = \operatorname{Ker}(\Delta) \oplus \operatorname{Im}(d^{\nabla}) \oplus \operatorname{Im}((d^{\nabla})^*)$ and $H_{\mathrm{dR}}(M) = \operatorname{Ker}(\Delta)$

$$T(M; \nabla)^2 = \prod_{n \in \mathbb{Z}} \det_{\zeta} \left(\Delta'_n\right)^{(-1)^n n}$$

where \det_{ζ} : regularized determinant using $\zeta_{\Delta_n}(s) = \operatorname{Tr} \Delta_n^{-s}$

Remark: Independent of Riemannian metric

Torsion for rank 2 bundles

Torsion function: $\tau_M = T(M; -) : \{ \text{Flat connections} \} \to \mathbb{R}$ Holonomy: $\{ \text{Flat connections} \} \leftrightarrow \{ H_1(M) \to U(1) \}$

Torsion for rank 2 bundles

```
Torsion function: \tau_M = T(M; -) : \{ \text{Flat connections} \} \to \mathbb{R}
Holonomy: \{ \text{Flat connections} \} \leftrightarrow \{ H_1(M) \to U(1) \}
```

Cheeger-Mueller Theorem

- $\tau_M \in \operatorname{Frac}(\mathbb{Z}[H_1(M)])$; and,
- \blacksquare $\tau_{\rm M}$ agrees with the Reidemeister torsion

Reidemeister torsion for CW complexes

 $\overline{M} \to M$ maximal abelian cover. Lift CW structure from M Combinatorial torsion of $C_*^{\mathrm{CW}}\left(\overline{M}\right)$ as $\mathrm{Frac}\left(\mathbb{Z}[H_1(M)]\right)$ -module

17

Reidemeister torsion for CW complexes

 $\overline{M} o M$ maximal abelian cover. Lift CW structure from M Combinatorial torsion of $C_*^{\mathrm{CW}}\left(\overline{M}\right)$ as $\mathrm{Frac}\left(\mathbb{Z}[H_1(M)]\right)$ -module

Torsion of knots

$$H_1(E(\mathcal{K})) = \mathbb{Z}$$
 so $\tau_{E(\mathcal{K})} \in \mathbb{Q}(t)$
Proportional to the Alexander polynomial

17

Reidemeister torsion for CW complexes

 $\overline{M} \to M$ maximal abelian cover. Lift CW structure from M Combinatorial torsion of C_*^{CW} (\overline{M}) as Frac $(\mathbb{Z}[H_1(M)])$ -module

Torsion of knots

 $H_1(E(\mathfrak{K}))=\mathbb{Z}$ so $au_{E(\mathfrak{K})}\in\mathbb{Q}(t)$ Proportional to the Alexander polynomial

Torsion of higher knots

 $H_1(E(\mathcal{K})) = \mathbb{Z}$ for all $\mathcal{K} : S^n \hookrightarrow S^{n+2}$ Alternating product of higher Alexander polynomials

17

PATH INTEGRALS 101

Gaussian integrals

 $A \in M_n(\mathbb{R})$ symmetric, positive definite

$$\int_{X \in \mathbb{R}^n} e^{-\frac{1}{2}\langle X, AX \rangle} = \sqrt{\frac{(2\pi)^n}{\det(A)}}$$

PATH INTEGRALS 101

Gaussian integrals

 $A \in M_n(\mathbb{R})$ symmetric, positive definite

$$\int_{\mathsf{X}\in\mathbb{R}^n} \mathrm{e}^{-\frac{1}{2}\langle \mathsf{X},\mathsf{A}\mathsf{X}\rangle} = \sqrt{\frac{(2\pi)^n}{\det(\mathsf{A})}}$$

"Free" field theories, basic case

(M,g) Riemannian manifold, E vector bundle $A: \Gamma(M;E) \to \Gamma(M;E)$ differential operator

$$\mathcal{Z}(M) = \int_{V \in \Gamma(M;E)} \mathrm{e}^{-\frac{1}{2}g(V,AV)} := \sqrt{\frac{1}{\det_{\zeta}(A)}}$$

BF INVARIANT

Birmingham-Blau-Rakowski-Thompson ansatz

 $\mathcal{M}(M^d; E)$ moduli space of orthogonal flat connections

$$\mathcal{Z}(M^d;E) = \int_{\nabla \in \mathcal{M}(M;E)} T(M;\nabla)^{-1}$$

is the BF invariant for $(M^d; E)$

BF INVARIANT

Birmingham-Blau-Rakowski-Thompson ansatz

 $\mathcal{M}(M^d; E)$ moduli space of orthogonal flat connections

$$\mathcal{Z}(M^d;E) = \int_{\nabla \in \mathcal{M}(M;E)} T(M;\nabla)^{-1}$$

is the BF invariant for $(M^d; E)$

Commentary

- For Rank(E) = n, M(M; E) is derived manifold $\operatorname{Hom}(\pi_1(M), SO(n)) /\!\!/ SO(n)$
 - ► Unclear (to me) how to integrate
- Suggests that codim-2 operators ~> torsion polynomials

Cattaneo et al: 3D BF theory

Line operators in rank 2 give Alexander polynomial

Cattaneo et al: 3D BF theory

Line operators in rank 2 give Alexander polynomial

Better understanding of 4D BF theory

■ Baez: BF + 'cosmological constant' = Crane–Yetter for $\operatorname{Rep} U_q \mathfrak{g}$

Cattaneo et al: 3D BF theory

Line operators in rank 2 give Alexander polynomial

Better understanding of 4D BF theory

- Baez: BF + 'cosmological constant' = Crane–Yetter for $\operatorname{Rep} U_q \mathfrak{g}$
 - ► Deformation of torsion polynomials of 2-knots?
 - ► Ben-Zvi-Brochier-Gunningham-Jordan-Safronov-Snyder: Factorization homology techniques

Cattaneo et al: 3D BF theory

Line operators in rank 2 give Alexander polynomial

Better understanding of 4D BF theory

- Baez: BF + 'cosmological constant' = Crane-Yetter for $\operatorname{Rep} U_q \mathfrak{g}$
 - ► Deformation of torsion polynomials of 2-knots?
 - ► Ben-Zvi-Brochier-Gunningham-Jordan-Safronov-Snyder: Factorization homology techniques
- Ben-Zvi-Nadler: Betti geometric Langlands

Cattaneo et al: 3D BF theory

Line operators in rank 2 give Alexander polynomial

Better understanding of 4D BF theory

- Baez: BF + 'cosmological constant' = Crane-Yetter for $\operatorname{Rep} U_{q\mathfrak{g}}$
 - ► Deformation of torsion polynomials of 2-knots?
 - ► Ben-Zvi-Brochier-Gunningham-Jordan-Safronov-Snyder: Factorization homology techniques
- <u>Ben-Zvi-Nadler:</u> Betti geometric Langlands

Thank you!