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Local elliptic boundary conditions

Second order elliptic operator (Laplace):
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T 0 Dirichlet boundary condition

First order elliptic operator (Cauchy-Riemann):
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There do not exist local elliptic boundary conditions for 0

Atiyah-Bott-Singer found a K-theoretic explanation and generalization

Instead of conditions one can have boundary data (degrees of freedom)
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Boundary theories in QFT

- Bord?lem’w1 — Vecttop
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Boundary data: £ € H, 0 € H*

Extended theory: F': Bordlf”i;m’w1 — Vecttop
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In higher dimensions we use boundaries in space rather than time



Toy example

Bord?&n manifolds with a double cover
F: Bord?&n — Vect  invertible field theory

F(pt x{+1} — pt) = C with sign representation

F extension with boundary theory
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Toy example

Bord?&n manifolds with a double cover

F: Bord?&n — Vect  invertible field theory

}j(pt x{x1} - pt) =C

with sign representation
F

extension with boundary theory

0 < HOR®
4_

1-morphism evaluates to a sign-invariant element of C, hence vanishes
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Reshetikhin-Turaev theories
Witten: Path integral from classical Chern-Simons invariant
Reshetikhin-Turaev: Start from modular tensor category (Moore-Seiberg)
Reconcile through notion of extended field theory
F: Bordﬁrl’273> — Cat
Catg is a 2-category of complex linear categories (to be specified)
F(S1) is the modular tensor category

In the 3-framed case there are two circles: S}, S}
F(S}) is the MTC and F(S}) is a module category over it

Does this F' admit a nonzero boundary theory?
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Fully extended TFT

Full locality is encoded in a fully extended theory:

Bordg = Bord€1”0717_,. 2 bordism n-category
e target n-category
J% Bordg —C fully extended theory

Our main theorem concerns fully extended RT theories
F'Bordi =@

Henriques extended SUy Chern-Simons theories down to points
We hope to define €, F' for general RT theories in future work. . .

F(+) is not the collection of boundary theories

Hom, (1, F(+)) = boundary theories (it may be zero)
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Deligne, Franco, Etingof-Gelaki-Nikshych-Ostrik, Haugseng,
Johnson-Freyd-Scheimbauer, Douglas-Schommer-Pries-Snyder,
Ben-Zvi-Brochier-Jordan, BJS, BJ-Safronov-S, ...

Cat is the symmetric monoidal 2-category of finitely
cocomplete C-linear categories under Deligne-Kelly X

A tensor category is an algebra object in Caty

Ey(Catg) is the symmetric monoidal 3-category of tensor
categories, bimodules under relative X, ...

FSCat C Cat, full subcategory of finite semisimple abelian
Fusion category: finite semisimple rigid abelian tensor cat

Fus C E;(Cat) symmetric monoidal subcategory of fusion
categories and finite semisimple bimodule categories
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Cobordism hypothesis

(Hopkins-Lurie, Lurie): Evaluation at a point

Hom(Bord, @) — (i)~
F+—— F(+4)

is a homotopy equivalence of spaces

fd is the fully dualizable subcategory of €
()~ is its maximal subgroupoid

An extension F with boundary theory [ is determined by
an (n — 1) dualizable 1-morphism (+): 1 — F(+)

A 2-dualizable object in Cat, is finite semisimple abelian

(Douglas-Schommer-Pries-Snyder): Fus'® = Fus
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Turaev-Viro theories

A fusion category ® determines a 3-dimensional TET

T: Bordf — Ey(Cat)
with TS =i

The truncation

. fr
T<172,3> H Bord<1,273> SN Cat(c

is an RT theory

T(Sl}) is the Drinfeld center of ®, a modular tensor category
T(S}) is the Drinfeld cocenter of ®, a module category over T'(S})

n

Chern-Simons for finite groups, or special tori and levels



Let C be a symmetric monoidal 3-category whose fully dualizable
part C' contains the 3-category Fus of fusion categories as a full
subcategory. Let F': Bordgr — € be a 3-framed topological field theory

such that
(a) F(SY) is isomorphic in € to a fusion category, and

(b) F(S}) is invertible as an object in the 4-category E»(2€) of braided
tensor categories



Let C be a symmetric monoidal 3-category whose fully dualizable

part C' contains the 3-category Fus of fusion categories as a full
subcategory. Let F': Bordgr — € be a 3-framed topological field theory
such that

(a) F(SY) is isomorphic in € to a fusion category, and
(b) F(S}) is invertible as an object in the 4-category E»(2€) of braided

tensor categories

Assume F extends to F': Bordga — € such that the associated

boundary theory 5: 1 — 7_,F' is nonzero



Let C be a symmetric monoidal 3-category whose fully dualizable

part C' contains the 3-category Fus of fusion categories as a full
subcategory. Let F': Bordgr — € be a 3-framed topological field theory
such that

(a) F(SY) is isomorphic in € to a fusion category, and
(b) F(S}) is invertible as an object in the 4-category E»(2€) of braided

tensor categories

Assume F extends to F': Bordga — € such that the associated

boundary theory 5: 1 — 7_,F' is nonzero

Then F(S}) is braided tensor equivalent to the Drinfeld center of a
fusion category ®y with simple unit
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Characterization of fusion categories

(Douglas-Schommer-Pries-Snyder) Fusf® = Fus

FT): Let ® € E(Catg) be a tensor category. Then @ is a
fusion category if and only if

(i) @ is 3-dualizable in F;(Cat), and
(ii) ® is 2-dualizable as a left ®-module

A =Clz]/(2?)

® tensor category of finite dimensional A-A bimodules
@ 1o Vect, so ® satisfies (i)

® is not semisimple, nor does it have internal duals

Usefulness of regular ®-module: see also Section 6 of arXiv:1806.00008
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Application to physics

New materials which insulate in the bulk and conduct on the boundary

A feature of the Quantum Hall Effect, for example

When is conduction forced on the boundary?

The main theorem gives a criterion in 2 + 1 dimensions, if we are willing
to make a few jumps
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Quantum mechanics:

H Hilbert space (states)
Jaks dnb = Jrl Hamiltonian

Gapped vs. gapless (a spectral gap obstructs conduction)

(1) QM system approx at low energy: scale-invariant QFT
(2) Gapped QM system — topological* field theory (TFT)

Apply main theorem to 2 + 1 dim’l system:
Gapped interior (bulk) = 3d TFT F

If gapped boundary theory exists, then F' admits
a nonzero boundary theory

For many F' the theorem implies no such
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Preliminary 1: bordism multicategories

The proof is an interplay between geometry of bordism (with corners)
and the higher algebra of tensor categories

Bokstedt-Madsen, Calaque-Scheimbauer and Ayala-Francis give detailed
constructions of higher bordism categories

We sketch a few rules of the road convenient for manipulations
“Arrows of time” at boundaries and corners, not global time functions
Fix n € Z>% k€ {0,...,n}, d€ {0,..., k}

A k-morphism of depth d in Bord,, is a compact k-manifold with corners
of depth < d with extra data: highly structured boundary, arrows of
time, tangential structure
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Adjoints exist:
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Bordgfaz domain of F = (F, )

Same objects as Bordg, but new 1- and 2-morphisms
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Preliminary 2: internal homs

€ symmetric monoidal 2-category

1t i> Y 1-morphism with adjoints
Hom™(f,g) = ffog € €(z,2), 7 o
Hom™(f,h) = ho fI' e Cy,w), h: x — w.

If h=g=f (so z=x and w = y), then have algebra objects
End®(f) = f%o f €€(z,z)
End"(f) = fo f* €C(y,y)
DSS|: A,B € Fus, M: A — B a (B, A)-bimodule
category. Then M has adjoints and
End?(M) = End (M)
End“(M) = End ,(M)



Recall the theorems

€ symmetric monoidal 3-category
¢ 5 Fus full subcategory

% Bord e

F: Bordf{a — € such that 5: ' 75 F isinonzeto

—> ...of a fusion category ®y with simple unit

Let ® € Ey(Cat) be a tensor category. Then @ is a fusion
category if and only if

(i) @ is 3-dualizable in Fy(Cat), and

(ii) © is 2-dualizable as a left ®-module
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The fusion category ®

End"(f;)
o B
A | N T Sl el
® = F(End"(f}))
= End"(F(fy)) 200 —
= End"(3(+))
e A o
|
B ‘ BE

Lemma: & is a finite semisimple abelian category

F: Bordf — Catg

(dimensional reduction)
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Lemma: @ is rigid (has internal left and right duals)

® € Fy(Caty). The unit n and multlphcatlon W
c)-

have right adjoints € : ® — 1 and A : & — ® X ® (Frobenius data)

W M

Set B=coV:®X® — 1, f(z) := B(z,—), f'(y) := B(—,y)

Theorem: A finite semisimple tensor category ® is rigid if (i) f, fV are
isomorphisms, and (ii) A is a ®-® bimodule map
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(i) and (ii) have “picture proofs” in the extended field theory F:

Theorem: ® is a fusion category

Cobordism hypothesis == T: Bordj — Fi(Caty) with T'(+) = @



Let C be a symmetric monoidal 3-category whose fully dualizable
part C' contains the 3-category T'Cat of finite tensor categories as a
full subcategory. Let F': Bordgr — € be a 3-framed topological field
theory such that A

(a) F(SY) is isomorphic in € to a multifusion category, and

(b) F(S}) is invertible as an object in the 4-category E»(2€) of braided
tensor categories.

Assume F extends to F': Bordga — € such that the associated

boundary theory 5: 1 — 7_,F' is nonzero.

Then F(S}) is braided tensor equivalent to the Drinfeld center of a
fusion category ®.
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A~ F(S")-module categories

+ o—— D= e: SO —s 0

I+ T e (0 —s g0

M= (F(e): A =5 F(S% —» Vect,

N = (ﬁ(fq ): Vecte — F(S°) —=» A

M is a left A-module category
N is a right A-module category
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Morita equivalences

M = F(e)

St = eoel = End”(e)

F(S}) ~ F(End"(e)) ~ End”(F(e)) ~ End ,(M)



Morita equivalences

M = F(e)

< St = eoel = End”(e)

F(S}) ~ F (End"(¢)) ~ Bnd" (F(¢)) ~ End ,(M)

i o N = B(S°)

As theories, T = End(3), and so T(S°) = End®(N) = End s (N)






Final steps
! AR i
d~M®, N

N is invertible as a (A, T'(S°))-bimodule:
End (M) 2 Bnd g0, (®) == End g gmo ()
Z(®) = T(Sy)

F(Sp)



