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Hilbert’s Landmark Theorems (1890s)

Throughout: k is a field and S = k[x1, . . . , xn]. All ideals, modules, etc. will be
homogeneous.

Hilbert Basis Theorem: S is noetherian (i.e. every ideal in S is finitely generated).
Hilbert Syzygy Theorem: every module has a free resolution

F0 ← F1 ← · · · ← Fn ← 0

of length ≤ n.

These yield a huge array of finiteness results in modern algebra.

Question
Are there interesting analogues of these results as n→∞?



Projective Dimension
Any (graded) S-module M has a free resolution:

F0
φ1← F1

φ2← F2 ← · · ·
Each Fi is free; coker φ1 = M; and image ∂i+1 = ker ∂i for all i ≥ 1.

Definition
The projective dimension of M, denoted pdim(M) is

min

{
p where M has a free resolution
of the form F0 ← · · · ← Fp ← 0

}
(or∞).

Theorem (Hilbert Syzygy Theorem, 1890)
For any S-module M, pdim(M) ≤ n.

Example

S/(f ) has free resolution S f←− S; so pdim(S/(f )) = 1.



What happens to Hilbert’s Theorems as n→∞?

At first pass, nothing good seems to happen! Over k[x1, x2, . . . ]:
Basis Theorem fails: (x1, x2, . . . ) requires infinitely many generators.
Syzygy Theorem fails: there are ideals of arbitrarily large (or even∞) projective
dimension. E.g. pdim((x1, x2, . . . , xr )) = r − 1.

But what if we narrow the question, e.g.:

Question
Let I be an ideal generated by 5 cubic polynomials in 1010 variables. Hilbert’s Syzygy
Theorem says pdim(I) ≤ 1010. Can we do better?

Goal: to describe some recent frameworks where analogues of Hilbert’s results hold,
even as n→∞.



Stillman’s Conjecture

Stillman’s Conjecture (Proven by Ananyan–Hochster 2015)
Let f1, . . . , fr be polynomials of degree ≤ d. One can bound the projective dimension of
(f1, . . . , fr ) solely in terms of r and d.

This is a version of Hilbert’s Syzygy Theorem as n→∞. Note:

Example
pdim(x1, . . . , xr ) = r . (So bound must involve r .)

Example (Beder, McCullough, Nunez-Betancourt, Seceleanu, Snapp, Stone,
2011)
For any d , one can find polynomials f1, f2, f3 of degree d where

pdim((f1, f2, f3)) ≥
√

d
√

d−1
. (So bound must involve d .)



A notion of complexity for polynomials
The strength of a homogeneous polynomial f is the minimal s for which we can write
f =

∑s
i=0 gihi with gi and hi of positive degree, or∞ if no such decomposition exists.

The collective strength of f1, . . . , fr is the minimal strength of a homogeneous k-linear
combination of the fi .

Example
The strength x1x2 + x3x4 + x5x6 is 2.

Example
A polynomial has strength∞ if and only if it is a nonzero linear form.

This is a measure of complexity which can only go to∞ if n→∞.

Example (Banks-Bruce, in progress)
A general quartic in 100 variables has strength 90. (Related: a general quartic
hypersurface V (Q) ⊆ P99 contains a P9.)



Ananyan–Hochster Principle

Ananyan–Hochster Principle
If the collective strength of f1, . . . , fr is sufficiently large (relative to d , r ) then f1, . . . , fr will
behave approximately like independent variables.

The principle takes a fact about independent variables and predicts a corresponding
statement for polynomials of high strength:

Fact about linear forms:
x1, . . . , xr form

a regular sequence

AH Principle
=⇒

Predicted statement:
Any f1, . . . , fr of high enough

strength form a reg. seq

The predicted statement could then be proven or disproven. (In the above case, it is a
theorem of Ananyan–Hochster.)

Other instances (due to Ananyan–Hochster): algebraic independence; defining a prime
ideal; defining a smooth variety . . .



Results in the spirt of the Ananyan-Hochster Principle
Let k = k. Let f1, . . . , fr be polynomials of degree ≤ d in n variables. If the collective
strength is sufficiently large then:

1 f1, . . . , fr form a regular sequence (Ananyan-Hochster).
2 V (f1, . . . , fr ) is smooth in high codimension (Ananyan-Hochster, Kazhdan–Ziegler).
3 V (f1, . . . , fr ) has trivial Picard and Chow groups (Grothendieck, Paranjape,

Esnault-Levine-Viehweg, . . . ).
4 V (f1) is unirational (Harris-Mazur-Pandharipande, Chen).
5 If k = Q, V (f1) satisfies the Hasse principle (Birch).

Question
Can we better describe when the Ananyan-Hochster Principle will/won’t apply to a
specific property?

Non-example: (x1, . . . , xr ) define a regular ring; but this can never happen for polynomials
of higher degree.



Proof of Stillman’s Conjecture I: setup

Lemma
Let I ⊆ S = k[x1, x2, . . . ]. If the generators of I belong to a subalgebra k[g1, . . . ,gt ] where
g1, . . . ,gt are a regular sequence, then pdim(I) ≤ t .

Let R = k[z1, . . . , zt ]. Let φ : R → S given by zi 7→ gi . This is faithfully flat since the gi
form a regular sequence.
Since the generators of I lie in k[g1, . . . ,gt ], we can find an ideal J ⊆ R where
φ(J) = I.
By flatness: pdim(J) = pdim(φ(J)).



Proof of Stillman’s Conjecture II: induction argument

Sample case: Start with I = (f1, f2, f3, f4) with deg(fi) = 3.

At each step, we either have a regular sequence and are done, or we can replace one
polynomial with lower degree polynomials.

If the collective strength of f1, f2, f3, f4 is high enough, then they form a regular
sequence and pdim(I) ≤ 4.

If not, we can rewrite f4 =
∑N

i=0 gihi . Then:
I If the collective of strength of f1, f2, f3,g0, . . . ,gN ,h0, . . . ,hN is high enough then they

form a regular sequence and pdim(I) ≤ 2n + 5.
I If not, we can rewrite f3 =

∑N′

i=0 g′
i h

′
i . Then:

F If the new set of f , g, h, g′, h′ are a regular sequence, then pdim(I) ≤ 2N + 2N ′ + 6 . . .
F If not, we can rewrite . . .

I If not, we can rewrite hN =
∑N′′

i=0 g′′
i h′′

i . Then: . . .

Eventually this process terminates, yielding:



Proof of Stillman’s Conjecture III: small subalgebras

Theorem (Ananyan-Hochster’s Small Subalgebra Theorem)
Let I ⊆ k[x1, x2, . . . ] be an ideal generated by ≤ r polynomials of degree ≤ d. There exists
s = s(r ,d) (not depending on n) such that the generators of I lie in a subalgebra
generated by a regular sequence of length ≤ s.

This implies Stillman’s Theorem by previous slides. It also explicitly connects Stillman’s
Conjecture to Hilbert’s Syzygy Theorem.

Example (Two Quadrics)
For independent quadrics q1,q2 (in any number of variables):

If q1,q2 is a regular sequence then they lie in k[q1,q2].
If q1,q2 are not a regular sequence, then they must be reducible quadrics with a
common factor. So q1 = `1`2 and q2 = `1`3 with `i linear. In this case, the subalgebra
is k[`1, `2, `3].



Limit Ananyan–Hochster Principle

Limit Ananyan–Hochster Principle
If f1, . . . , fr have infinite collective strength, then they should behave exactly like
independent variables.

Let kJJx1, x2, . . .KK be the graded ring where

kJJx1, x2, . . .KKd =

{
arbitrary k-linear combinations of
degree d monomials in x1, x2, . . .

}
For example

∑∞
i=1 x2

i is a degree two element.
This is an inverse limit of the polynomial rings as n→∞.
It contains new elements of strength∞ like

∑∞
i=1 x2

i .
Non-noetherian: even kJJx1, x2, . . .KK1 has an uncountable basis.
Had appeared in Snellman’s work on universal Gröbner bases.



Big polynomial rings

Theorem (E-Sam-Snowden, 2018)
The limit ring kJJx1, x2, . . .KK is isomorphic to a polynomial ring k[Z] where Z is any maximal
set of collective strength∞.

Z contains uncountably many elements of degree d for each d ≥ 1.

Example: the power sums {
∑∞

i=1 xd
i }d have collective strength∞.

The theorem verifies the limit Ananyan–Hochster principle.
New possibilities for Stillman’s Conjecture, etc.
One can define “universal polynomials” like

∑
cijxixj to study universal Gröbner

bases. (See work of Draisma, Laśon, Leykin).
Corollary: Finitely generated ideals in kJJx1, x2, . . .KK have finite projective dimension.



Proof over C:
By definition of Z, we get a surjection:

Φ : C[Z]→ CJJx1, x2, . . .KK

where zi 7→ gi . Choose a kernel element of minimal degree. WLOG it only involves
z1, . . . , zr . By considering this as a polynomial in zr with coefficients in C[z1, . . . , zr−1], we
get a nontrivial relation:

ar gn
r =

n−1∑
i=0

aig i
r in CJJx1, x2, . . .KK

where ai ∈ C[g1, . . . ,gr−1].

Now for the trick: take an appropriate partial derivative of both sides to get a relation of
lower degree, yielding a contradiction.

(Subtlety: check that the new relation is nontrivial. Easy in characteristic 0. In
characteristic p, use Hasse deriviatives.)



The ultraproduct ring

Let S be the graded ultraproduct of polynomial rings k[x1, . . . , xni ] for i ∈ N, where ni →∞
as i →∞. A degree d element of S is a collection (fi) of degree d polynomials in
k[x1, . . . , xni ].

Theorem (E-Sam-Snowden, 2018)
The ultraproduct ring S is isomorphic to a polynomial ring. Variables correspond to
sequences (fi) where the strength of fi is unbounded.

Advantage of the ultraproduct limit is that we can work with arbitrary sequences of
polynomials (fi). Makes it easier to pass properties from the infinite strength case
to the finite strength.



A Hilbert Basis Theorem as n→∞?
Topological Version: descending chains of Zariski closed subsets in An stabilize.

Fails for A∞. But something similar is true if we study infinite dimensional affine spaces
with large group actions.

Example
Let X1 = Spec(k[c1, c2, . . . ]). X1 corresponds to kJJx1, x2, . . .KK1 via (c1, c2, . . . ) 7→

∑
cixi ,

and this gives X1 a GL∞-action. Any descending chain of GL∞-invariant, closed subsets
of X1 stabilizes.
Why? The only GL∞-invariant closed subsets are X1 and the origin.

Example
Let X2 = {kJJx1, x2, . . .KK2} with the induced GL∞-action. Any descending chain of
GL∞-invariant, closed subsets of X2 stabilizes.
Why? The only GL∞-invariant closed subsets are the loci of quadrics of rank ≤ r for some
r .



A Hilbert Basis Theorem as n→∞?

Sam–Snowden asked whether this held in a far more general setting. Draisma proved
that it did.

Our setup: Let Xd = {kJJx1, x2, . . .KKd}, endowed with the corresponding GL∞-action. Let
X r

d be the product of r copies of Xd .

Theorem (Draisma)
X r

d is GL∞-noetherian, that is, any descending chain of GL∞-invariant closed subsets of
X r

d stabilizes.a

aDraisma’s actual result applies to other Schur functors, etc.

Many related results: S∞-actions, FI-modules, twisted commutative algebras, stronger
results in cases of quadrics and cubics, . . .



Stillman’s Conjecture and more via GL∞-noetherianity
Write Xd ,r = Spec(k[ci,α]). We can define universal “polynomials”:

Fi =
∑
α

ci,αxα ∈ k[ci,α]JJx1, x2, . . .KK.

We have a universal family V (F1, . . . ,Fr )→ Xd ,r .
Over the generic point, k(ci,α)JJx1, x2, . . .KK is a polynomial ring.
This implies “generic flatness” for the universal family.
We can thus build a (potentially infinite) flattening stratification for the universal family.
We may assume each strata is GL∞-invariant.
Draisma’s result then implies that the stratification is finite.

This provides an alternate proof of Stillman’s Conjecture. Moreover:

Theorem (E-Sam-Snowden, 2018)
Any ideal invariant which is semicontinuous in flat families and stable under adjoining a
variable can be bounded in terms of d and r .



Is there a “dual” of Stillman’s Conjecture?

Context 1: Koszul duality/BGG correspondence:
modules over

polynomial ring
Sym(V )

←→


modules over
exterior algebra∧

(V ∗)



Theorem (McCullough, 2019)
There is no “good” analogue of Ananyan and Hochster’s results for modules over exterior
algebras.

Context 2: Boij-Söderberg theory: (Eisenbud-Schreyer, 2006){
free resolutions of modules over

polynomial ring Sym(V )

}
←→

{
cohomology of

sheaves on P(V ∗)

}
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Context 2: Boij-Söderberg theory: (Eisenbud-Schreyer, 2006){
free resolutions of modules over

polynomial ring Sym(V )

}
←→

{
cohomology of

sheaves on P(V ∗)

}



Sheaf Cohomology Tables
Question
Are there finiteness bounds for sheaf cohomology similar to the results of Ananyan and
Hochster?

Let E be a coherent sheaf on Pn. Define γi,j(E) := dimk H i(Pn,E(j)).

γ(E) =


· · · γn,0 γn,1 γn,2 · · ·
· · · γn−1,1 γn−1,2 γn−1,3 · · ·

...
...

... · · ·
· · · γ0,n γ0,n+1 γ0,n+2 · · ·


Example

γ(OP2) =

· · · 6 3 1 0 0 0 0 · · ·
· · · 0 0 0 0 0 0 0 · · ·
· · · 0 0 0 1 3 6 10 · · ·





Main Theorem: Finiteness of Cohomology Tables

Theorem (E-Sam-Snowden, 2019)
Let b and b′ be column vectors and fix any k. Even as n→∞, there are only finitely
many cohomology tables γ(E) whose k and (k + 1)’st columns are b and b′.

γ(E) =



...
...

...
· · · γk ,0 γk ,1 γk ,2 · · ·
· · · γk−1,1 γk−1,2 γk−1,3 · · ·

...
...

... · · ·
· · · γ0,k γ0,k+1 γ0,k+2 · · ·


Note: this parallels an alternate version of Stillman’s Conjecture, which is phrased in
terms of the Betti table of the ideal.



Small Projective Spaces

Parallel of Ananyan-Hochster’s Small Subalgebra Theorem:

Theorem (E-Sam-Snowden, 2019)
Fix b and b′ and k. Then there exists c = c(b,b′) with the following property: any sheaf E
where the k and (k + 1)’st columns of γ(E) are b and b′ is the pushforward of a sheaf on
Pc via an embedding Pc → Pn.

While c depends only on b and b′, but Pc → Pn depends on E.
Cohomology is stable under proper maps, so this implies the boundedness result on
cohomology tables.



Conclusion: What next?

These results open the door to many more questions:
Effective questions: (Work of McCullough, Mantero-McCullough, Ananyan–Hochster,
and many more)
GL∞-noetherianity beyond topological statements? (Connected to FI-modules,
twisted commutative algebra, and more)
Geometric applications? (Applications to Hartshorne’s Conjecture, Fano varieties,
. . . )
How strength relates to other notions of complexity: (Bik–Draisma–Eggermont,
Kazhdan–Ziegler)
Multigraded questions (Nobody yet?)
How to compute strength in actual examples (Nobody? Chen?)


