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Hilbert’s Landmark Theorems (1890s)

Throughout: k is a field and S = K[xq, ..., x,]. All ideals, modules, etc. will be
homogeneous.

@ Hilbert Basis Theorem: S is noetherian (i.e. every ideal in S is finitely generated).
@ Hilbert Syzygy Theorem: every module has a free resolution

Fo+—Fi <+ -« Fp+0
of length < n.
These yield a huge array of finiteness results in modern algebra.

Question
Are there interesting analogues of these results as n — oo ?




Projective Dimension
Any (graded) S-module M has a free resolution:

FO@H &FQ%
Each F; is free; coker 1 = M; and image d;,1 = ker9; for all i > 1.
Definition
The projective dimension of M, denoted pdim(M) is

. [ pwhere M has a free resolution (or oo)
m of the form Fo < --- < Fp <0 >

Theorem (Hilbert Syzygy Theorem, 1890)
For any S-module M, pdim(M) < n.

Example

S/(f) has free resolution S «— S; so pdim(S/(f)) = 1.




What happens to Hilbert’'s Theorems as n — c0?

At first pass, nothing good seems to happen! Over K[xq, X2, .. .]:
@ Basis Theorem fails: (x1, X, .. .) requires infinitely many generators.
@ Syzygy Theorem fails: there are ideals of arbitrarily large (or even o) projective
dimension. E.g. pdim((xy, X2,..., X)) =r—1.
But what if we narrow the question, e.g.:

Question

Let | be an ideal generated by 5 cubic polynomials in 10'° variables. Hilbert's Syzygy
Theorem says pdim(/) < 10'°. Can we do better?

Goal: to describe some recent frameworks where analogues of Hilbert’s results hold,
even as n — oo.



Stillman’s Conjecture

Stillman’s Conjecture (Proven by Ananyan—Hochster 2015)

Letfq,...,f. be polynomials of degree < d. One can bound the projective dimension of
(fi,...,f;) solely in terms of r and d.

This is a version of Hilbert’'s Syzygy Theorem as n — oo. Note:

Example
pdim(X1,...,X,) = r. (So bound must involve r.)

Example (Beder, McCullough, Nunez-Betancourt, Seceleanu, Snapp, Stone,
2011)

For any d, one can find polynomials fi, >, f3 of degree d where
odim((f;, . %)) > vd" %", (So bound must involve d.)




A notion of complexity for polynomials
The strength of a homogeneous polynomial f is the minimal s for which we can write
f =737, gih with g; and h; of positive degree, or oo if no such decomposition exists.

The collective strength of f;, ..., f. is the minimal strength of a homogeneous k-linear
combination of the f;.

Example
The strength xqxo + X3X4 + X5Xg iS 2.

Example
A polynomial has strength oo if and only if it is a nonzero linear form.

This is a measure of complexity which can only go to oo if n — oc.

Example (Banks-Bruce, in progress)

A general quartic in 100 variables has strength 90. (Related: a general quartic
hypersurface V(Q) C P%° contains a P?.)




Ananyan—Hochster Principle

Ananyan—Hochster Principle

If the collective strength of fy, . .., f. is sufficiently large (relative to d,r) then fy, ... f. will
behave approximately like independent variables.

The principle takes a fact about independent variables and predicts a corresponding
statement for polynomials of high strength:

Fact about linear forms: Al Princio Predicted statement:
X1, ..., X form :’>C'peAny fi,...,f of high enough
a regular sequence strength form a reg. seq

The predicted statement could then be proven or disproven. (In the above case, itis a
theorem of Ananyan—Hochster.)

Other instances (due to Ananyan—Hochster): algebraic independence; defining a prime
ideal; defining a smooth variety ...



Results in the spirt of the Ananyan-Hochster Principle

Letk = k. Let f;, ..., f, be polynomials of degree < d in n variables. If the collective
strength is sufficiently large then:

Q f,...,f form aregular sequence (Ananyan-Hochster).

Q V(fi,...,f)is smooth in high codimension (Ananyan-Hochster, Kazhdan—Ziegler).

Q V(fi,...,f) has trivial Picard and Chow groups (Grothendieck, Paranjape,
Esnault-Levine-Viehweg, . ..).

© V(fy) is unirational (Harris-Mazur-Pandharipande, Chen).

Q Ifk=Q, V(f;) satisfies the Hasse principle (Birch).

Question
Can we better describe when the Ananyan-Hochster Principle will/won’t apply to a
specific property?

Non-example: (xi, ..., X;) define a regular ring; but this can never happen for polynomials
of higher degree.



Proof of Stillman’s Conjecture |: setup

Lemma
Let| C S =K[xy, X2,...]. If the generators of | belong to a subalgebrak|gs, ..., gi] where
o1,..., 0t are a regular sequence, then pdim(/) < t.

@ Let R=K|z,

..., Zt]. Let ¢ : R — S given by z; — g;. This is faithfully flat since the g;
form a regular sequence.

@ Since the generators of / lie in k[g, .
o(J) = 1.
@ By flatness: pdim(J) = pdim(¢(J)).

.., 9], we can find an ideal J C R where



Proof of Stillman’s Conjecture Il: induction argument

Sample case: Start with | = (fy, f, f5, f4) with deg(f;) = 3.

At each step, we either have a regular sequence and are done, or we can replace one
polynomial with lower degree polynomials.

@ If the collective strength of f;, f», f3, f4 is high enough, then they form a regular
sequence and pdim(/) < 4.
e If not, we can rewrite f, = >N g;h;. Then:
» If the collective of strength of 1, >, f3, 9o, - - - , 9, ho,
form a regular sequence and pdim(/) <2n+5.
» If not, we can rewrite i = Zf’;o g;h;. Then:

* |f the new set of f, g, h,g’, ' are a regular sequence, then pdim(/) < 2N +2N' +6 ...
* If not, we can rewrite ...

» If not, we can rewrite hy = Zﬁ; g/'hi. Then: ...
Eventually this process terminates, yielding:

..., hy is high enough then they



Proof of Stillman’s Conjecture lll: small subalgebras

Theorem (Ananyan-Hochster’'s Small Subalgebra Theorem)

Let | C K[x1, X2, ...] be an ideal generated by < r polynomials of degree < d. There exists
s = s(r,d) (not depending on n) such that the generators of | lie in a subalgebra
generated by a regular sequence of length < s.

This implies Stillman’s Theorem by previous slides. It also explicitly connects Stillman’s
Conjecture to Hilbert’s Syzygy Theorem.

Example (Two Quadrics)
For independent quadrics gy, g (in any number of variables):

@ If g1, g- is a regular sequence then they lie in k[g1, g2].

@ If g4, g are not a regular sequence, then they must be reducible quadrics with a
common factor. So q; = 41/ and g = (4¢3 with ¢; linear. In this case, the subalgebra
is k[€1,€2,£3].




Limit Ananyan—Hochster Principle

Limit Ananyan—Hochster Principle

Iffy,..., f. have infinite collective strength, then they should behave exactly like
independent variables.

Let k[[x1, X2, . . .]] be the graded ring where

arbitrary k-linear combinations of
k[l[X1,X2,...]]]d { y }

degree d monomials in x4, Xo,

For example >°7°, x? is a degree two element.
@ This is an inverse limit of the polynomial rings as n — oc.
@ It contains new elements of strength oo like >7°; x2.

@ Non-noetherian: even k[x¢, X2, . ..Jl1 has an uncountable basis.
@ Had appeared in Snellman’s work on universal Grébner bases.



Big polynomial rings

Theorem (E-Sam-Snowden, 2018)

The limit ring K[ x1, X2, . . .]| is isomorphic to a polynomial ring K[Z] where Z is any maximal
set of collective strength c.

Z contains uncountably many elements of degree d for each d > 1.

e Example: the power sums {>"2°, x?} 4 have collective strength co.
@ The theorem verifies the limit Ananyan—Hochster principle.
@ New possibilities for Stillman’s Conjecture, etc.

@ One can define “universal polynomials” like ) _ ¢jx;x; to study universal Grobner
bases. (See work of Draisma, Lason, Leykin).

@ Corollary: Finitely generated ideals in K[ x1, X2, .. .] have finite projective dimension.



Proof over C:
By definition of Z, we get a surjection:

$: (C[Z] — (C[IIX1,X2, .. ﬂ]

where z; — g;. Choose a kernel element of minimal degree. WLOG it only involves
zy,...,2r. By considering this as a polynomial in z, with coefficients in C|z, ..., z,_1], we
get a nontrivial relation:

n—1
a9l =Y agr in Cha,x,..]
i~0

where a; € C[gy,...,9r-1]-

Now for the trick: take an appropriate partial derivative of both sides to get a relation of
lower degree, yielding a contradiction.

(Subtlety: check that the new relation is nontrivial. Easy in characteristic 0. In
characteristic p, use Hasse deriviatives.)



The ultraproduct ring

Let S be the graded ultraproduct of polynomial rings K[xi, ..., X, ] for i € N, where n; — oo
as i — oo. A degree d element of S is a collection (f;) of degree d polynomials in
Kixi,...,Xn]

Theorem (E-Sam-Snowden, 2018)

The ultraproduct ring S is isomorphic to a polynomial ring. Variables correspond to
sequences (f;) where the strength of f; is unbounded.

Advantage of the ultraproduct limit is that we can work with arbitrary sequences of
polynomials (f;). Makes it easier to pass properties from the infinite strength case
to the finite strength.



A Hilbert Basis Theorem as n — oc?

Topological Version: descending chains of Zariski closed subsets in A” stabilize.
Fails for A>°. But something similar is true if we study infinite dimensional affine spaces
with large group actions.

Example

Let X1 = Spec(k[cy, Co, .. .]). Xi corresponds to K[[x1, X2, ...J1 via (¢c1,¢Co,...) — > CiXj,
and this gives X; a GL.-action. Any descending chain of GL.-invariant, closed subsets
of Xj stabilizes.

Why? The only GL-invariant closed subsets are X; and the origin.

Example

Let Xo = {K[[x1, X2, .. .2} with the induced GL-action. Any descending chain of
GL-invariant, closed subsets of X, stabilizes.

Why? The only GL.-invariant closed subsets are the loci of quadrics of rank < r for some
r.




A Hilbert Basis Theorem as n — oo?

Sam-Snowden asked whether this held in a far more general setting. Draisma proved
that it did.

Our setup: Let Xy = {K[x1, X2, .. .] 4}, endowed with the corresponding GL.-action. Let
X, be the product of r copies of Xj.
Theorem (Draisma)

X], is GL.-noetherian, that is, any descending chain of GL-invariant closed subsets of
X, stabilizes.?

?Draisma’s actual result applies to other Schur functors, etc.

Many related results: S-actions, FI-modules, twisted commutative algebras, stronger
results in cases of quadrics and cubics, ...



Stillman’s Conjecture and more via GL.-noetherianity
Write Xy » = Spec(K[c; ]). We can define universal “polynomials”:

Fi — Z C,'7aXa S k[Ci’a][IIXhXQa e ]]]

We have a universal family V(Fy,..., F;) = Xq,-
@ Over the generic point, k(¢ o)[X1, X2, .. .] is a polynomial ring.
@ This implies “generic flatness” for the universal family.

@ We can thus build a (potentially infinite) flattening stratification for the universal family.
We may assume each strata is GL-invariant.

@ Draisma’s result then implies that the stratification is finite.
This provides an alternate proof of Stillman’s Conjecture. Moreover:

Theorem (E-Sam-Snowden, 2018)

Any ideal invariant which is semicontinuous in flat families and stable under adjoining a
variable can be bounded in terms of d and'r.




Is there a “dual” of Stillman’s Conjecture?
Context 1: Koszul duality/BGG correspondence:

modules over modules over
polynomial ring , <— ¢ exterior algebra

Sym(V) AV



Is there a “dual” of Stillman’s Conjecture?
Context 1: Koszul duality/BGG correspondence:
modules over modules over
polynomial ring , <— ¢ exterior algebra
Sym(V) AV7)

Theorem (McCullough, 2019)

There is no “‘good” analogue of Ananyan and Hochster’s results for modules over exterior
algebras.




Is there a “dual” of Stillman’s Conjecture?
Context 1: Koszul duality/BGG correspondence:
modules over modules over
polynomial ring , <— ¢ exterior algebra
Sym(V) AV7)

Theorem (McCullough, 2019)

There is no “‘good” analogue of Ananyan and Hochster’s results for modules over exterior
algebras.

Context 2: Boij-Soderberg theory: (Eisenbud-Schreyer, 2006)

free resolutions of modules over cohomology of
polynomial ring Sym(V) sheaves on P(V*)



Sheaf Cohomology Tables

Question

Are there finiteness bounds for sheaf cohomology similar to the results of Ananyan and
Hochster?

Let € be a coherent sheaf on IP". Define +; ;(€) := dimy H(P", £(j)).

Yn,0 Yn1 Yn,2
 Yn—-11 Yn-12 Yn-13
Y€)= ) : :

Yo,n  Yo,n+1  Y0,n+2

Example
.- 631 000 O
Y(Op2)=|--- 0 0 0 0 0 0 O
.- 0001 3 6 10




Main Theorem: Finiteness of Cohomology Tables

Theorem (E-Sam-Snowden, 2019)

Letb and b’ be column vectors and fix any k. Even as n — oo, there are only finitely
many cohomology tables v(€) whose k and (k + 1)’st columns are b andb’.

Yko o VkA k2
YE) =] Yk—11 Yk-12 Tk—13

Yo,k V0.k+1  Y0,k+2

Note: this parallels an alternate version of Stillman’s Conjecture, which is phrased in
terms of the Betti table of the ideal.



Small Projective Spaces

Parallel of Ananyan-Hochster’s Small Subalgebra Theorem:

Theorem (E-Sam-Snowden, 2019)

Fixb andb’ and k. Then there exists ¢ = c(b,b’) with the following property: any sheaf &
where the k and (k + 1) st columns of v(€) are b and b’ is the pushforward of a sheaf on

IP¢ via an embedding P¢ — P".

@ While ¢ depends only on b and b/, but P° — P" depends on €.
@ Cohomology is stable under proper maps, so this implies the boundedness result on
cohomology tables.



Conclusion: What next?

These results open the door to many more questions:

@ Effective questions: (Work of McCullough, Mantero-McCullough, Ananyan—Hochster,
and many more)

@ GL.-noetherianity beyond topological statements? (Connected to Fl-modules,
twisted commutative algebra, and more)

@ Geometric applications? (Applications to Hartshorne’s Conjecture, Fano varieties,
.2)

@ How strength relates to other notions of complexity: (Bik—Draisma—Eggermont,
Kazhdan—Ziegler)

@ Multigraded questions (Nobody yet?)
@ How to compute strength in actual examples (Nobody? Chen?)



