Boundedness questions for polynomials in many variables

Daniel Erman (Wisconsin) Steven Sam (UCSD)
Andrew Snowden (Michigan)

May 14, 2020: Zoom

Hilbert's Landmark Theorems (1890s)

Throughout: \mathbf{k} is a field and $S=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$. All ideals, modules, etc. will be homogeneous.

- Hilbert Basis Theorem: S is noetherian (i.e. every ideal in S is finitely generated).
- Hilbert Syzygy Theorem: every module has a free resolution

$$
F_{0} \leftarrow F_{1} \leftarrow \cdots \leftarrow F_{n} \leftarrow 0
$$

of length $\leq n$.
These yield a huge array of finiteness results in modern algebra.

Question

Are there interesting analogues of these results as $n \rightarrow \infty$?

Projective Dimension

Any (graded) S-module M has a free resolution:

$$
F_{0} \stackrel{\phi_{1}}{\leftarrow} F_{1} \stackrel{\phi_{2}}{\leftarrow} F_{2} \leftarrow \cdots
$$

Each F_{i} is free; coker $\phi_{1}=M$; and image $\partial_{i+1}=\operatorname{ker} \partial_{i}$ for all $i \geq 1$.

Definition

The projective dimension of M, denoted $\operatorname{pdim}(M)$ is

$$
\left.\min \left\{\begin{array}{c}
p \text { where } M \text { has a free resolution } \\
\text { of the form } F_{0} \leftarrow \cdots \leftarrow F_{p} \leftarrow 0
\end{array}\right\} \quad \text { (or } \infty\right)
$$

Theorem (Hilbert Syzygy Theorem, 1890)
For any S-module M, pdim $(M) \leq n$.

Example

$S /(f)$ has free resolution $S \stackrel{f}{\longleftarrow} S$; so $\operatorname{pdim}(S /(f))=1$.

What happens to Hilbert's Theorems as $n \rightarrow \infty$?

At first pass, nothing good seems to happen! Over $\mathbf{k}\left[x_{1}, x_{2}, \ldots\right]$:

- Basis Theorem fails: $\left(x_{1}, x_{2}, \ldots\right)$ requires infinitely many generators.
- Syzygy Theorem fails: there are ideals of arbitrarily large (or even ∞) projective dimension. E.g. pdim $\left(\left(x_{1}, x_{2}, \ldots, x_{r}\right)\right)=r-1$.

But what if we narrow the question, e.g.:

Question

Let I be an ideal generated by 5 cubic polynomials in 10^{10} variables. Hilbert's Syzygy Theorem says pdim $(I) \leq 10^{10}$. Can we do better?

Goal: to describe some recent frameworks where analogues of Hilbert's results hold, even as $n \rightarrow \infty$.

Stillman's Conjecture

Stillman's Conjecture (Proven by Ananyan-Hochster 2015)

Let f_{1}, \ldots, f_{r} be polynomials of degree $\leq d$. One can bound the projective dimension of $\left(f_{1}, \ldots, f_{r}\right)$ solely in terms of r and d.

This is a version of Hilbert's Syzygy Theorem as $n \rightarrow \infty$. Note:

Example

 $\operatorname{pdim}\left(x_{1}, \ldots, x_{r}\right)=r$. (So bound must involve r.)Example (Beder, McCullough, Nunez-Betancourt, Seceleanu, Snapp, Stone, 2011)

For any d, one can find polynomials f_{1}, f_{2}, f_{3} of degree d where $\operatorname{pdim}\left(\left(f_{1}, f_{2}, f_{3}\right)\right) \geq \sqrt{d}^{\sqrt{d-1}}$. (So bound must involve d.)

A notion of complexity for polynomials

The strength of a homogeneous polynomial f is the minimal s for which we can write $f=\sum_{i=0}^{s} g_{i} h_{i}$ with g_{i} and h_{i} of positive degree, or ∞ if no such decomposition exists.
The collective strength of f_{1}, \ldots, f_{r} is the minimal strength of a homogeneous \mathbf{k}-linear combination of the f_{i}.

Example

The strength $x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$ is 2 .

Example

A polynomial has strength ∞ if and only if it is a nonzero linear form.
This is a measure of complexity which can only go to ∞ if $n \rightarrow \infty$.

Example (Banks-Bruce, in progress)

A general quartic in 100 variables has strength 90. (Related: a general quartic hypersurface $V(Q) \subseteq \mathbb{P}^{99}$ contains a \mathbb{P}^{9}.)

Ananyan-Hochster Principle

Ananyan-Hochster Principle

If the collective strength of f_{1}, \ldots, f_{r} is sufficiently large (relative to d, r) then f_{1}, \ldots, f_{r} will behave approximately like independent variables.

The principle takes a fact about independent variables and predicts a corresponding statement for polynomials of high strength:

Fact about linear forms:
x_{1}, \ldots, x_{r} form
a regular sequence

Predicted statement:

$\xrightarrow{A H} \xrightarrow{\text { Principle }}$ Any f_{1}, \ldots, f_{r} of high enough strength form a reg. seq

The predicted statement could then be proven or disproven. (In the above case, it is a theorem of Ananyan-Hochster.)

Other instances (due to Ananyan-Hochster): algebraic independence; defining a prime ideal; defining a smooth variety ...

Results in the spirt of the Ananyan-Hochster Principle

Let $\mathbf{k}=\overline{\mathbf{k}}$. Let f_{1}, \ldots, f_{r} be polynomials of degree $\leq d$ in n variables. If the collective strength is sufficiently large then:
(1) f_{1}, \ldots, f_{r} form a regular sequence (Ananyan-Hochster).
(2) $V\left(f_{1}, \ldots, f_{r}\right)$ is smooth in high codimension (Ananyan-Hochster, Kazhdan-Ziegler).
(3) $V\left(f_{1}, \ldots, f_{r}\right)$ has trivial Picard and Chow groups (Grothendieck, Paranjape, Esnault-Levine-Viehweg, ...).
(4) $V\left(f_{1}\right)$ is unirational (Harris-Mazur-Pandharipande, Chen).
(5) If $\mathbf{k}=\mathbb{Q}, V\left(f_{1}\right)$ satisfies the Hasse principle (Birch).

Question

Can we better describe when the Ananyan-Hochster Principle will/won't apply to a specific property?

Non-example: $\left(x_{1}, \ldots, x_{r}\right)$ define a regular ring; but this can never happen for polynomials of higher degree.

Proof of Stillman's Conjecture I: setup

Lemma

Let $I \subseteq S=\mathbf{k}\left[x_{1}, x_{2}, \ldots\right]$. If the generators of I belong to a subalgebra $\mathbf{k}\left[g_{1}, \ldots, g_{t}\right]$ where g_{1}, \ldots, g_{t} are a regular sequence, then $\operatorname{pdim}(I) \leq t$.

- Let $R=\mathbf{k}\left[z_{1}, \ldots, z_{t}\right]$. Let $\phi: R \rightarrow S$ given by $z_{i} \mapsto g_{i}$. This is faithfully flat since the g_{i} form a regular sequence.
- Since the generators of $/$ lie in $\mathbf{k}\left[g_{1}, \ldots, g_{t}\right]$, we can find an ideal $J \subseteq R$ where $\phi(J)=I$.
- By flatness: $\operatorname{pdim}(J)=\operatorname{pdim}(\phi(J))$.

Proof of Stillman's Conjecture II: induction argument

Sample case: Start with $I=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ with $\operatorname{deg}\left(f_{i}\right)=3$.
At each step, we either have a regular sequence and are done, or we can replace one polynomial with lower degree polynomials.

- If the collective strength of $f_{1}, f_{2}, f_{3}, f_{4}$ is high enough, then they form a regular sequence and $\operatorname{pdim}(I) \leq 4$.
- If not, we can rewrite $f_{4}=\sum_{i=0}^{N} g_{i} h_{i}$. Then:
- If the collective of strength of $f_{1}, f_{2}, f_{3}, g_{0}, \ldots, g_{N}, h_{0}, \ldots, h_{N}$ is high enough then they form a regular sequence and $\operatorname{pdim}(I) \leq 2 n+5$.
- If not, we can rewrite $f_{3}=\sum_{i=0}^{N^{\prime}} g_{i}^{\prime} h_{i}^{\prime}$. Then:
\star If the new set of $f, g, h, g^{\prime}, h^{\prime}$ are a regular sequence, then $\operatorname{pdim}(I) \leq 2 N+2 N^{\prime}+6 \ldots$
\star If not, we can rewrite ...
- If not, we can rewrite $h_{N}=\sum_{i=0}^{N^{\prime \prime}} g_{i}^{\prime \prime} h_{i}^{\prime \prime}$. Then: \ldots

Eventually this process terminates, yielding:

Proof of Stillman's Conjecture III: small subalgebras

Theorem (Ananyan-Hochster's Small Subalgebra Theorem)

Let $I \subseteq \mathbf{k}\left[x_{1}, x_{2}, \ldots\right]$ be an ideal generated by $\leq r$ polynomials of degree $\leq d$. There exists $s=s(r, d)$ (not depending on n) such that the generators of I lie in a subalgebra generated by a regular sequence of length $\leq s$.

This implies Stillman's Theorem by previous slides. It also explicitly connects Stillman's Conjecture to Hilbert's Syzygy Theorem.

Example (Two Quadrics)

For independent quadrics q_{1}, q_{2} (in any number of variables):

- If q_{1}, q_{2} is a regular sequence then they lie in $\mathbf{k}\left[q_{1}, q_{2}\right]$.
- If q_{1}, q_{2} are not a regular sequence, then they must be reducible quadrics with a common factor. So $q_{1}=\ell_{1} \ell_{2}$ and $q_{2}=\ell_{1} \ell_{3}$ with ℓ_{i} linear. In this case, the subalgebra is $\mathbf{k}\left[\ell_{1}, \ell_{2}, \ell_{3}\right]$.

Limit Ananyan-Hochster Principle

Limit Ananyan-Hochster Principle

If f_{1}, \ldots, f_{r} have infinite collective strength, then they should behave exactly like independent variables.

Let $\mathbf{k} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ be the graded ring where

$$
\mathbf{k} \llbracket x_{1}, x_{2}, \ldots \rrbracket_{d}=\left\{\begin{array}{l}
\text { arbitrary } \mathbf{k} \text {-linear combinations of } \\
\text { degree } d \text { monomials in } x_{1}, x_{2}, \ldots
\end{array}\right\}
$$

For example $\sum_{i=1}^{\infty} x_{i}^{2}$ is a degree two element.

- This is an inverse limit of the polynomial rings as $n \rightarrow \infty$.
- It contains new elements of strength ∞ like $\sum_{i=1}^{\infty} x_{i}^{2}$.
- Non-noetherian: even $\mathbf{k} \llbracket x_{1}, x_{2}, \ldots \rrbracket_{1}$ has an uncountable basis.
- Had appeared in Snellman's work on universal Gröbner bases.

Big polynomial rings

Theorem (E-Sam-Snowden, 2018)

The limit ring $\mathbf{k} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ is isomorphic to a polynomial ring $\mathbf{k}[z]$ where z is any maximal set of collective strength ∞.
z contains uncountably many elements of degree d for each $d \geq 1$.

- Example: the power sums $\left\{\sum_{i=1}^{\infty} x_{i}^{d}\right\}_{d}$ have collective strength ∞.
- The theorem verifies the limit Ananyan-Hochster principle.
- New possibilities for Stillman's Conjecture, etc.
- One can define "universal polynomials" like $\sum c_{i j} x_{i} x_{j}$ to study universal Gröbner bases. (See work of Draisma, Laśon, Leykin).
- Corollary: Finitely generated ideals in $\mathbf{k} \llbracket x_{1}, x_{2}, \ldots \rrbracket$ have finite projective dimension.

Proof over \mathbb{C} :

By definition of z, we get a surjection:

$$
\Phi: \mathbb{C}[\mathcal{Z}] \rightarrow \mathbb{C} \llbracket x_{1}, x_{2}, \ldots \mathbb{d}
$$

where $z_{i} \mapsto g_{i}$. Choose a kernel element of minimal degree. WLOG it only involves z_{1}, \ldots, z_{r}. By considering this as a polynomial in z_{r} with coefficients in $\mathbb{C}\left[z_{1}, \ldots, z_{r-1}\right]$, we get a nontrivial relation:

$$
a_{r} g_{r}^{n}=\sum_{i=0}^{n-1} a_{i} g_{r}^{i} \quad \text { in } \quad \mathbb{C} \llbracket x_{1}, x_{2}, \ldots \rrbracket
$$

where $a_{i} \in \mathbb{C}\left[g_{1}, \ldots, g_{r-1}\right]$.
Now for the trick: take an appropriate partial derivative of both sides to get a relation of lower degree, yielding a contradiction.
(Subtlety: check that the new relation is nontrivial. Easy in characteristic 0. In characteristic p, use Hasse deriviatives.)

The ultraproduct ring

Let \mathbf{S} be the graded ultraproduct of polynomial rings $\mathbf{k}\left[x_{1}, \ldots, x_{n_{i}}\right]$ for $i \in \mathbb{N}$, where $n_{i} \rightarrow \infty$ as $i \rightarrow \infty$. A degree d element of \mathbf{S} is a collection $\left(f_{i}\right)$ of degree d polynomials in $\mathbf{k}\left[x_{1}, \ldots, x_{n_{i}}\right]$.

Theorem (E-Sam-Snowden, 2018)

The ultraproduct ring \mathbf{S} is isomorphic to a polynomial ring. Variables correspond to sequences $\left(f_{i}\right)$ where the strength of f_{i} is unbounded.

Advantage of the ultraproduct limit is that we can work with arbitrary sequences of polynomials $\left(f_{i}\right)$. Makes it easier to pass properties from the infinite strength case to the finite strength.

A Hilbert Basis Theorem as $n \rightarrow \infty$?

Topological Version: descending chains of Zariski closed subsets in \mathbb{A}^{n} stabilize.
Fails for \mathbb{A}^{∞}. But something similar is true if we study infinite dimensional affine spaces with large group actions.

Example

Let $X_{1}=\operatorname{Spec}\left(\mathbf{k}\left[c_{1}, c_{2}, \ldots\right]\right) . X_{1}$ corresponds to $\mathbf{k} \llbracket x_{1}, x_{2}, \ldots \rrbracket_{1}$ via $\left(c_{1}, c_{2}, \ldots\right) \mapsto \sum c_{i} X_{i}$, and this gives X_{1} a GL_{∞}-action. Any descending chain of GL_{∞}-invariant, closed subsets of X_{1} stabilizes.
Why? The only GL_{∞}-invariant closed subsets are X_{1} and the origin.

Example

Let $X_{2}=\left\{\mathbf{k} \llbracket x_{1}, x_{2}, \ldots \rrbracket_{2}\right\}$ with the induced GL_{∞}-action. Any descending chain of GL_{∞}-invariant, closed subsets of X_{2} stabilizes.
Why? The only GL_{∞}-invariant closed subsets are the loci of quadrics of rank $\leq r$ for some r.

A Hilbert Basis Theorem as $n \rightarrow \infty$?

Sam-Snowden asked whether this held in a far more general setting. Draisma proved that it did.

Our setup: Let $X_{d}=\left\{\mathbf{k} \llbracket x_{1}, x_{2}, \ldots \rrbracket_{d}\right\}$, endowed with the corresponding GL_{∞}-action. Let X_{d}^{r} be the product of r copies of X_{d}.

Theorem (Draisma)

X_{d}^{r} is GL_{∞}-noetherian, that is, any descending chain of GL_{∞}-invariant closed subsets of X_{d}^{r} stabilizes. ${ }^{a}$

[^0]Many related results: S_{∞}-actions, FI-modules, twisted commutative algebras, stronger results in cases of quadrics and cubics, ...

Stillman's Conjecture and more via GL_{∞}-noetherianity

 Write $X_{d, r}=\operatorname{Spec}\left(\mathbf{k}\left[c_{i, \alpha}\right]\right)$. We can define universal "polynomials":$$
F_{i}=\sum_{\alpha} c_{i, \alpha} x^{\alpha} \in \mathbf{k}\left[c_{i, \alpha}\right] \llbracket x_{1}, x_{2}, \ldots \mathbb{\|} .
$$

We have a universal family $V\left(F_{1}, \ldots, F_{r}\right) \rightarrow X_{d, r}$.

- Over the generic point, $\mathbf{k}\left(c_{i, \alpha}\right) \llbracket x_{1}, x_{2}, \ldots \rrbracket$ is a polynomial ring.
- This implies "generic flatness" for the universal family.
- We can thus build a (potentially infinite) flattening stratification for the universal family. We may assume each strata is GL_{∞}-invariant.
- Draisma's result then implies that the stratification is finite.

This provides an alternate proof of Stillman's Conjecture. Moreover:

Theorem (E-Sam-Snowden, 2018)

Any ideal invariant which is semicontinuous in flat families and stable under adjoining a variable can be bounded in terms of d and r.

Is there a "dual" of Stillman's Conjecture?

Context 1: Koszul duality/BGG correspondence:

$$
\left\{\begin{array}{c}
\text { modules over } \\
\text { polynomial ring } \\
\operatorname{Sym}(V)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { modules over } \\
\text { exterior algebra } \\
\Lambda\left(V^{*}\right)
\end{array}\right\}
$$

Is there a "dual" of Stillman's Conjecture?

Context 1: Koszul duality/BGG correspondence:

Theorem (McCullough, 2019)

There is no "good" analogue of Ananyan and Hochster's results for modules over exterior algebras.

Is there a "dual" of Stillman's Conjecture?

Context 1: Koszul duality/BGG correspondence:

$$
\left\{\begin{array}{c}
\text { modules over } \\
\text { polynomial ring } \\
\operatorname{Sym}(V)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { modules over } \\
\text { exterior algebra } \\
\Lambda\left(V^{*}\right)
\end{array}\right\}
$$

Theorem (McCullough, 2019)

There is no "good" analogue of Ananyan and Hochster's results for modules over exterior algebras.

Context 2: Boij-Söderberg theory: (Eisenbud-Schreyer, 2006)

Sheaf Cohomology Tables

Question

Are there finiteness bounds for sheaf cohomology similar to the results of Ananyan and Hochster?

Let \mathcal{E} be a coherent sheaf on \mathbb{P}^{n}. Define $\gamma_{i, j}(\mathcal{E}):=\operatorname{dim}_{\mathbf{k}} H^{i}\left(\mathbb{P}^{n}, \mathcal{E}(j)\right)$.

$$
\gamma(\mathcal{E})=\left(\begin{array}{ccccc}
\cdots & \gamma_{n, 0} & \gamma_{n, 1} & \gamma_{n, 2} & \cdots \\
\cdots & \gamma_{n-1,1} & \gamma_{n-1,2} & \gamma_{n-1,3} & \cdots \\
& \vdots & \vdots & \vdots & \cdots \\
\cdots & \gamma_{0, n} & \gamma_{0, n+1} & \gamma_{0, n+2} & \cdots
\end{array}\right)
$$

Example

$$
\gamma\left(\mathcal{O}_{\mathbb{P}^{2}}\right)=\left(\begin{array}{lllllllcl}
\cdots & 6 & 3 & 1 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 1 & 3 & 6 & 10 & \cdots
\end{array}\right)
$$

Main Theorem: Finiteness of Cohomology Tables

Theorem (E-Sam-Snowden, 2019)

Let \mathbf{b} and \mathbf{b}^{\prime} be column vectors and fix any k. Even as $n \rightarrow \infty$, there are only finitely many cohomology tables $\gamma(\mathcal{E})$ whose k and $(k+1)$ 'st columns are \mathbf{b} and \mathbf{b}^{\prime}.

$$
\gamma(\mathcal{E})=\left(\begin{array}{ccccc}
& \vdots & \vdots & \vdots & \\
\cdots & \gamma_{k, 0} & \gamma_{k, 1} & \gamma_{k, 2} & \cdots \\
\cdots & \gamma_{k-1,1} & \gamma_{k-1,2} & \gamma_{k-1,3} & \cdots \\
& \vdots & \vdots & \vdots & \cdots \\
\cdots & \gamma_{0, k} & \gamma_{0, k+1} & \gamma_{0, k+2} & \cdots
\end{array}\right)
$$

Note: this parallels an alternate version of Stillman's Conjecture, which is phrased in terms of the Betti table of the ideal.

Small Projective Spaces

Parallel of Ananyan-Hochster's Small Subalgebra Theorem:

Theorem (E-Sam-Snowden, 2019)

Fix \mathbf{b} and \mathbf{b}^{\prime} and k. Then there exists $c=c\left(\mathbf{b}, \mathbf{b}^{\prime}\right)$ with the following property: any sheaf ε where the k and $(k+1)$ 'st columns of $\gamma(\mathcal{E})$ are \mathbf{b} and \mathbf{b} ' is the pushforward of a sheaf on \mathbb{P}^{c} via an embedding $\mathbb{P}^{c} \rightarrow \mathbb{P}^{n}$.

- While c depends only on \mathbf{b} and \mathbf{b}^{\prime}, but $\mathbb{P}^{c} \rightarrow \mathbb{P}^{n}$ depends on ε.
- Cohomology is stable under proper maps, so this implies the boundedness result on cohomology tables.

Conclusion: What next?

These results open the door to many more questions:

- Effective questions: (Work of McCullough, Mantero-McCullough, Ananyan-Hochster, and many more)
- GL_{∞}-noetherianity beyond topological statements? (Connected to FI-modules, twisted commutative algebra, and more)
- Geometric applications? (Applications to Hartshorne's Conjecture, Fano varieties, ...)
- How strength relates to other notions of complexity: (Bik-Draisma-Eggermont, Kazhdan-Ziegler)
- Multigraded questions (Nobody yet?)
- How to compute strength in actual examples (Nobody? Chen?)

[^0]: ${ }^{\text {a }}$ Draisma's actual result applies to other Schur functors, etc.

