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Overview

Our goal: a cubical analogue of the Joyal model structure, filling in
the bottom corner of the table:

category \ theory ∞-groupoids (∞, 1)-categories

sSet Quillen Joyal

cSet Grothendieck present work
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Throughout this talk, we work with cubical sets having only:

I faces ∂i ,ε : [1]n → [1]n+1;

I degeneracies σi : [1]n → [1]n−1;

I max-connections γi : [1]n → [1]n−1.

We write cubical structure maps on the right, e.g. x∂i ,ε.
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Main result

Theorem
The category cSet of cubical sets carries a model structure in
which:

I the cofibrations are the monomorphisms;

I the fibrant objects are defined by having fillers for all inner
open boxes.

This model structure is Quillen equivalent to the Joyal model
structure on sSet via the triangulation functor T : cSet→ sSet.
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Review: The Grothendieck model structure

In the Grothendieck model structure on cSet:

I Cofibrations are monomorphisms;

I Fibrations are defined by the right lifting property with respect
to open box inclusions uni ,ε ↪→ �n;

I Weak equivalences X → Y induce bijections on homotopy
classes [Y ,Z ]→ [X ,Z ] where Z is fibrant.
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Review: The Grothendieck model structure

Here open box fillings play the role of horn fillings in the Quillen
model structure on sSet

(0, 1) // (1, 1) (0, 1) // (1, 1)

� � //

(0, 0)

OO

(1, 0)

OO

(0, 0) //

OO

(1, 0)

OO

u22,0 �2
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Review: The Grothendieck model structure

Theorem (Cisinski)

The adjunction T : cSet� sSet : U is a Quillen equivalence
between the Grothendieck and Quillen model structures.

So the Grothendieck model structure presents the theory of
∞-groupoids – is there a model structure on cSet for
(∞, 1)-categories?

We begin with a model structure on marked cubical sets.
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Structurally marked cubical sets

Define a new category �] by adding an object [1]e to �.
New generating maps:

ϕ : [1]→ [1]e

ζ : [1]e → [0]

such that ζϕ = σ11.

[1]e
ζ

~~
[0]

//
// [1]oo

ϕ

OO

////

////
[1]2oooo · · ·
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Structurally marked cubical sets

cSet′′: category of presheaves on �]. Structurally marked
cubical sets.

“Cubical sets with (possibly multiple) markings on their edges”.

hom(−, [1]e) := (�1)]

For X ∈ cSet′′, X ([1]e) := Xe . “Markings in X”.

I α ∈ Xe ⇒ αϕ ∈ X1. Underlying edge of marking α.

I x ∈ X0 ⇒ xζ ∈ Xe with xζϕ = xσ1. “Distinguished marking
on xσ1”.
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Marked cubical sets

Marked cubical sets: structurally marked cubical set with at most
one marking on each edge.

cSet′: category of marked cubical sets. Maps are simply cubical set
maps preserving marked edges.

Think of marked edges as “equivalences”.
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Marked cubical sets

Two obvious ways of marking a cubical set X :

I Maximal marking X ]: all edges marked

I Minimal marking X [: only degenerate edges marked

These are functorial, and we have adjunctions:

cSet′(′)
⊥ // cSet

(−)]
⊥jj

(−)[
tt
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Geometric product of structurally marked cubical sets

Extend ⊗ : �×�→ cSet to ⊗ : �] ×�] → cSet′′ as follows:

I [1]n ⊗ [1]e has �n+1 as underlying cubical set with edges
(ε1, ..., εn, 0)→ (ε1, ..., εn, 1) marked;

I [1]e ⊗ [1]n has �n+1 as underlying cubical set with edges
(0, ε1, ..., εn)→ (1, ε1, ..., εn) marked;

I [1]e ⊗ [1]e = (�2)].

Example: [1]⊗ [1]e =

(1, 0) // (1, 1)

(0, 0) //

∼
OO

(0, 1)

∼
OO
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Geometric product of structurally marked cubical sets

Kan extend as with the geometric product of cubical sets:

�] ×�] //
� _

��

cSet′′

cSet′′ × cSet′′
⊗

88

This defines a monoidal product on cSet′′, and restricts to a
monoidal product on cSet′.
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For each X , the functor X ⊗− : cSet′(′)→ cSet′(′) has a right
adjoint homR(X ,−).

I homR(X ,Y )n = cSet′′(X ⊗�n,Y );

I homR(X ,Y )e = cSet′′(X ⊗ (�1)],Y ).

Similarly, −⊗ X has a right adjoint homL(X ,Y ).
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First goal: a model structure on cSet′, analogous to the marked
model structure on sSet′.

What do we need?

I Generating anodyne maps

I A concept of homotopy
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The critical edge

What kinds of open boxes represent composition?

Certain critical edges should be marked.

For n ≥ 1, 1 ≤ i ≤ n, ε ∈ {0, 1}, the critical edge of �n with
respect to face ∂i ,ε is the unique edge which:

I is adjacent to ∂i ,ε;

I together with ∂i ,ε, contains vertices (0, ..., 0) and (1, ..., 1).
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Special open boxes

For n ≥ 1, 1 ≤ i ≤ n, ε ∈ {0, 1} we have the (i , ε) special open
box inclusion ιni ,ε:

I Underlying cubical set map is uni ,ε ↪→ �n;

I Critical edge wrt face (i , ε) is marked in domain and
codomain.

(0) � �
ι11,0 // (0)

∼ // (1)

(0, 1) // (1, 1) (0, 1) // (1, 1)

� �
ι22,0 //

(0, 0)

OO

(1, 0)

∼

OO

(0, 0) //

OO

(1, 0)

∼

OO
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The saturation map

1 // 0

��

0

K :=

1 1 // 0

An edge �1 → X factoring through the middle edge of K is an
equivalence.

K ′ := K with the middle edge marked.
The saturation map is the inclusion K ↪→ K ′.
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The 3-out-of-4-maps

(0, 1)
∼ // (1, 1) (0, 1)

∼ // (1, 1)

� � //

(0, 0)

∼

OO

// (1, 0)

∼

OO

(0, 0)
∼ //

∼

OO

(1, 0)

∼

OO

and 3 others for other sides.
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Anodyne maps: Saturation of special open box inclusions,
saturation map, 3-out-of-4.

Naive fibrations: RLP(Anodyne maps).

Marked cubical quasicategory: X ∈ cSet′ such that X → �0 is
a naive fibration. (Suffices to check special open boxes and
saturation map.)
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Proposition

In a marked cubical quasicategory X , the marked edges are exactly
the equivalences.

Proof.
X → �0 lifts against K → K ′ by assumption.
The inclusion (�1)] → K ′ is a pushout of special open box fillings,
so X → �0 lifts against this map as well.

1 // 0

∼
��

0

1 1 // 0

21 / 46



An elementary right homotopy of maps f , g : X → Y in cSet′(′)
is a map H : X ⊗ (�1)] → Y with H|{0} = f ,H|{1} = g .

A right homotopy is a zigzag of elementary right homotopies.

By adjointness, right homotopies correspond to zigzags of marked
edges in homR(X ,Y ).
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The cubical marked model structure

Theorem
cSet′ carries a model structure in which:

I Cofibrations are monomorphisms;

I Fibrant objects are marked cubical quasicategories;

I Fibrations between fibrant objects are naive fibrations;

I Weak equivalences X → Y induce bijections on homotopy
classes [Y ,Z ]→ [X ,Z ] for Z fibrant.

This resembles a Cisinski model structure, except that cSet′ is not
a presheaf category. We construct it using Jeff Smith’s theorem.
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By (HKRS,2017) we can transfer this model structure along
cSet� cSet′, where the left adjoint is the minimal marking and
the right is the forgetful functor.

We obtain the cubical Joyal model structure on cSet.
Cofibrations and weak equivalences created by minimal marking.

Theorem
The adjunction cSet� cSet′ is a Quillen equivalence.

Proof.
The left adjoint (−)[ preserves and reflects cofibrations and weak
equivalences by definition.
For a marked cubical quasicategory X , the counit is a composite of
pushouts of the saturation map.
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Analysis of the cubical Joyal model structure

What can we say about this model structure on cSet?

I Cofibrations are monomorphisms.

I Goal: characterize weak equivalences, fibrant objects,
fibrations between fibrant objects.

I Goal: show it is Quillen-equivalent to the Joyal model
structure.

25 / 46



Inner open boxes

What are the cubical analogues of inner horns?

The inner open box ûni ,ε is uni ,ε with the critical edge quotiented
to a point.

Inner cube �̂n
i ,ε: the corresponding quotient of �n.

Have an inclusion ûni ,ε ↪→ �̂n
i ,ε.
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Cubical quasicategories

A cubical quasicategory is X ∈ cSet having the RLP against
inner open box fillings.

In particular, this lets us “compose” edges.

y
g // z û22,0� _

��

// X

��
x

f

OO

z �̂2 // �0
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Cubical quasicategories

A cubical quasicategory is X ∈ cSet having the RLP against
inner open box fillings.

In particular, this lets us “compose” edges.

y
g // z û22,0� _

��

// X

��
x

f

OO

gf // z �̂2 //

>>

�0
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Special open boxes in cSet

For X ∈ cSet, a special open box in X is uni ,ε → X sending the
critical edge to an equivalence.

Proposition

Cubical quasicategories admit fillers for special open boxes.
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Fibrant objects in cSet

Theorem
The fibrant objects in cSet are precisely the cubical quasicategories.

Proof.
Every fibrant object is a cubical quasicategory since inner open box
inclusions are trivial cofibrations.
Every cubical quasicategory is the underlying cubical set of a
marked cubical quasicategory.

A similar proof shows:

Theorem
Fibrations between fibrant objects are characterized by the RLP
against inner open box inclusions and endpoint inclusions
{ε} ↪→ K .
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Weak equivalences in cSet

We define homotopy in this model structure using K as a cylinder
object, i.e. (right) homotopy of maps X → Y is given by maps
X ⊗ K → Y .

Theorem
A map X → Y is a weak equivalence in cSet if and only if
[Y ,Z ]→ [X ,Z ] is a bijection for any cubical quasicategory Z .
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Mapping spaces
Let x0 and x1 be 0-cubes in a cubical quasicategory X .
MapX (x0, x1) is the cubical set given by

MapX (x0, x1)n =
{
�n+1 s→ X

∣∣ s∂n+1,ε = xε
}

,

with cubical operations given by those of X .

Example

I a 0-cube in MapX (x0, x1) is a 1-cube from x0 to x1 in X ;

I a 1-cube in MapX (x0, x1) is a 2-cube in X of the form

x0
f // x1

x0
g // x1
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Mapping spaces

Proposition

Given a cubical quasicategory X and 0-cubes x0, x1 : �0 → X , the
mapping space MapX (x0, x1) is a cubical Kan complex.
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Triangulation

Theorem
Triangulation and its right adjoint define a Quillen adjunction
T : cSet� sSetJoyal : U.

Proof.
T preserves cofibrations.
T sends {ε} ↪→ K to a trivial cofibration by direct computation.
T ûni ,ε ↪→ T �̂n: use decomposition of uni ,ε ↪→ �n as a pushout
product, reduce to open prism filling in sSet.
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Triangulation is difficult to work with. It would be hard to show
directly that T a U is a Quillen equivalence.

We will develop another adjunction Q : sSet� cSet :
∫

and show
that it is a Quillen equivalence, and that the derived functors of T
and Q are inverses.
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Cones

To define Q, we develop a theory of cones in cubical sets.
For m, n ≥ 0, define the standard (m, n)-cone Cm,n inductively as
follows:

I Cm,0 = �m;

I For n ≥ 1, Cm,n is given by the following pushout:

Cm,n−1 //

∂1,1⊗Cm,n−1

��

�0

��
�1 ⊗ Cm,n−1 // Cm,n

Each Cm,n is a quotient of �m+n.
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Cones
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Q a
∫

Denote C 0,n by Qn. This defines a cosimplicial object
Q• : ∆→ cSet.

a map Qn−1 → Qn 0th face 1st face 2nd face · · · jth face · · · nth face

is induced by a map �n−1 → �n ∂n,1 ∂n,0 ∂n−1,0 · · · ∂n−j+1,0 · · · ∂1,0

a map Qn → Qn−1 0th deg. 1st deg. 2nd deg. · · · jth deg. · · · (n − 1)st deg.

is induced by a map �n → �n−1 σn γn−1 γn−2 · · · γn−j · · · γ1

This extends to a functor Q : sSet→ cSet by left Kan extension.

Q has a right adjoint
∫

given by (
∫
X )n = cSet(Qn,X ).

Viewing sSet as sSet ↓ ∆0 and cSet as cSet[0], Q a
∫

coincides
with straightening a unstraightening.
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Q a
∫

We’ll show that Q a
∫

is a Quillen equivalence and use this to
prove that T a U is a Quillen equivalence.

Theorem
The adjunction Q : sSet� cSet :

∫
is Quillen.

Theorem
Q preserves and reflects weak equivalences.

Proof.
Both Q and T preserve weak equivalences.
We can define a natural weak equivalence TQ ⇒ idsSet.

TQX //

∼
��

TQY

∼
��

X // Y
This shows Q reflects weak equivalences.
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The counit of Q a
∫

Our goal: show that the counit is a trivial cofibration for X a
cubical quasicategory.

By (Kapulkin-Lindsey-Wong,2019) Q
∫
X is the subcomplex of X

whose cubes are those which factor through Q – the “maximal
simplicial subcomplex” of X .

We factor the counit as a series of subcomplex inclusions:

Q
∫
X = X 1 ↪→ X 2 ↪→ ... ↪→ Xm ↪→ ... ↪→ X

Non-degenerate cubes of each Xm are cubes factoring through
some Cm′,n′ with m′ ≤ m.

Each Xm ↪→ Xm+1 is a transfinite composite of inner open box
fillings.
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T a U as a Quillen equivalence

Theorem
The adjunction T : cSet� sSet : U is a Quillen equivalence.

Proof.
The natural weak equivalence TQ ⇒ idsSet becomes a natural
isomorphism in the homotopy category. The derived functor of Q
is an equivalence of categories, hence so is that of T .
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