Cubical models of $(\infty, 1)$ -categories Joint work with Chris Kapulkin, Zachery Lindsey, and Christian **Sattler**

Brandon Doherty

University of Western Ontario

May 13, 2020

Overview

Our goal: a cubical analogue of the Joyal model structure, filling in the bottom corner of the table:

Throughout this talk, we work with cubical sets having only:

$$
\blacktriangleright \ \text{faces } \partial_{i,\varepsilon} \colon [1]^n \to [1]^{n+1};
$$

- ► degeneracies $\sigma_i: [1]^n \rightarrow [1]^{n-1}$;
- ► max-connections $\gamma_i: [1]^n \rightarrow [1]^{n-1}$.

We write cubical structure maps on the right, e.g. $x\partial_{i,\epsilon}$.

Main result

Theorem

The category cSet of cubical sets carries a model structure in which:

- \blacktriangleright the cofibrations are the monomorphisms;
- \triangleright the fibrant objects are defined by having fillers for all inner open boxes.

This model structure is Quillen equivalent to the Joyal model structure on sSet via the triangulation functor $T:$ cSet \rightarrow sSet.

Review: The Grothendieck model structure

In the Grothendieck model structure on cSet:

- \triangleright Cofibrations are monomorphisms;
- \triangleright Fibrations are defined by the right lifting property with respect to open box inclusions $\sqcap_{i,\varepsilon}^n \hookrightarrow \square^n;$
- \triangleright Weak equivalences $X \rightarrow Y$ induce bijections on homotopy classes $[Y, Z] \rightarrow [X, Z]$ where Z is fibrant.

Review: The Grothendieck model structure

Here open box fillings play the role of horn fillings in the Quillen model structure on sSet

 \Box^2

Review: The Grothendieck model structure

Theorem (Cisinski)

The adjunction T : cSet \rightleftarrows sSet : U is a Quillen equivalence between the Grothendieck and Quillen model structures.

So the Grothendieck model structure presents the theory of ∞ -groupoids – is there a model structure on cSet for $(\infty, 1)$ -categories?

We begin with a model structure on **marked cubical sets**.

Structurally marked cubical sets

Define a new category \Box_{\sharp} by adding an object $[1]_{e}$ to \Box . New generating maps:

```
\varphi: [1] \to [1]_e
```

$$
\zeta\colon [1]_e\to [0]
$$

such that $\zeta \varphi = \sigma_1^1$.

Structurally marked cubical sets

cSet $^{\prime\prime}$: category of presheaves on $\Box_\sharp.$ <code>Structurally</code> marked cubical sets.

"Cubical sets with (possibly multiple) markings on their edges".

$$
\text{hom}(-, [1]_e) := (\square^1)^{\sharp}
$$

For $X \in \text{cSet}''$, $X([1]_e) := X_e$. "Markings in X".

 \triangleright $\alpha \in X_{\alpha} \Rightarrow \alpha \varphi \in X_1$. Underlying edge of marking α .

 \triangleright $x \in X_0 \Rightarrow x \in X_e$ with $x \in \mathcal{L}$ \in $x \sigma_1$. "Distinguished marking on $x\sigma_1$ ".

Marked cubical sets: structurally marked cubical set with at most one marking on each edge.

 c Set $'$: category of marked cubical sets. Maps are simply cubical set maps preserving marked edges.

Think of marked edges as "equivalences".

Marked cubical sets

Two obvious ways of marking a cubical set X :

- **Maximal marking** X^{\sharp} : all edges marked
- **Minimal marking** X^{\flat} : only degenerate edges marked

These are functorial, and we have adjunctions:

Geometric product of structurally marked cubical sets

Extend ⊗: $\Box \times \Box \rightarrow c$ Set to ⊗: $\Box_{\sharp} \times \Box_{\sharp} \rightarrow c$ Set" as follows:

- ► $[1]$ ⁿ \otimes $[1]$ _e has \Box ⁿ⁺¹ as underlying cubical set with edges $(\varepsilon_1, ..., \varepsilon_n, 0) \rightarrow (\varepsilon_1, ..., \varepsilon_n, 1)$ marked;
- ▶ $[1]_e \otimes [1]^n$ has \Box^{n+1} as underlying cubical set with edges $(0, \varepsilon_1, ..., \varepsilon_n) \rightarrow (1, \varepsilon_1, ..., \varepsilon_n)$ marked;

$$
\blacktriangleright \ [1]_e \otimes [1]_e = (\square^2)^\sharp.
$$

Example: $[1] \otimes [1]_e =$

$$
(1,0) \longrightarrow (1,1)
$$

\n
$$
\sim \uparrow \qquad \qquad \uparrow \sim
$$

\n
$$
(0,0) \longrightarrow (0,1)
$$

Geometric product of structurally marked cubical sets

Kan extend as with the geometric product of cubical sets:

This defines a monoidal product on cSet", and restricts to a monoidal product on cSet'.

For each X , the functor $X\otimes -\colon \mathsf{cSet}'(')\to \mathsf{cSet}'(')$ has a right adjoint $\underline{hom}_R(X, -)$.

\n- \n
$$
\underline{\text{hom}}_R(X, Y)_n = \text{cSet}''(X \otimes \Box^n, Y);
$$
\n
\n- \n
$$
\underline{\text{hom}}_R(X, Y)_e = \text{cSet}''(X \otimes (\Box^1)^\sharp, Y).
$$
\n
\n

Similarly, $-\otimes X$ has a right adjoint $\underline{\text{hom}}_L(X,Y).$

First goal: a model structure on cSet', analogous to the marked model structure on sSet'.

What do we need?

- \blacktriangleright Generating anodyne maps
- \blacktriangleright A concept of homotopy

The critical edge

What kinds of open boxes represent composition?

Certain critical edges should be marked.

For $n \geq 1, 1 \leq i \leq n, \varepsilon \in \{0, 1\}$, the **critical edge** of \Box^n with respect to face $\partial_{i,\varepsilon}$ is the unique edge which:

- is adjacent to $\partial_{i,\varepsilon}$;
- ► together with $\partial_{i,\varepsilon}$, contains vertices $(0, ..., 0)$ and $(1, ..., 1)$.

Special open boxes

For $n \geq 1, 1 \leq i \leq n, \varepsilon \in \{0, 1\}$ we have the (i, ε) special open box inclusion $\iota_{i,\varepsilon}^n$:

- \blacktriangleright Underlying cubical set map is $\sqcap_{i,\varepsilon}^n \hookrightarrow \square^n;$
- **In Critical edge wrt face** (i, ε) **is marked in domain and** codomain.

The saturation map

An edge $\Box^1 \rightarrow X$ factoring through the middle edge of K is an equivalence.

 $K' := K$ with the middle edge marked. The saturation map is the inclusion $K \hookrightarrow K'.$

The 3-out-of-4-maps

and 3 others for other sides.

Anodyne maps: Saturation of special open box inclusions, saturation map, 3-out-of-4.

Naive fibrations: RLP(Anodyne maps).

Marked cubical quasicategory: $X \in \text{cSet}'$ such that $X \to \Box^0$ is a naive fibration. (Suffices to check special open boxes and saturation map.)

Proposition

In a marked cubical quasicategory X , the marked edges are exactly the equivalences.

Proof.

 $X \to \Box^0$ lifts against $K \to K'$ by assumption. The inclusion $(\Box^1)^\sharp \to \mathcal{K}'$ is a pushout of special open box fillings, so $X \to \Box^0$ lifts against this map as well.

An elementary right homotopy of maps $f, g: X \to Y$ in cSet'(') is a map $H\colon X\otimes (\square^1)^\sharp\to Y$ with $H|_{\{0\}}=f,H|_{\{1\}}=g$.

A right homotopy is a zigzag of elementary right homotopies.

By adjointness, right homotopies correspond to zigzags of marked edges in $\underline{\text{hom}}_R(X, Y)$.

The cubical marked model structure

Theorem

cSet' carries a model structure in which:

- \triangleright Cofibrations are monomorphisms;
- \blacktriangleright Fibrant objects are marked cubical quasicategories;
- \blacktriangleright Fibrations between fibrant objects are naive fibrations;
- Weak equivalences $X \rightarrow Y$ induce bijections on homotopy classes $[Y, Z] \rightarrow [X, Z]$ for Z fibrant.

This resembles a Cisinski model structure, except that cSet' is not a presheaf category. We construct it using Jeff Smith's theorem.

By (HKRS,2017) we can transfer this model structure along $\mathsf{cSet} \rightleftarrows \mathsf{cSet}'$, where the left adjoint is the minimal marking and the right is the forgetful functor.

We obtain the **cubical Joyal model structure** on cSet. Cofibrations and weak equivalences created by minimal marking.

Theorem

The adjunction cSet \rightleftarrows cSet' is a Quillen equivalence.

Proof.

The left adjoint $(-)^\flat$ preserves and reflects cofibrations and weak equivalences by definition.

For a marked cubical quasicategory X , the counit is a composite of pushouts of the saturation map.

Analysis of the cubical Joyal model structure

What can we say about this model structure on cSet?

- \triangleright Cofibrations are monomorphisms.
- \triangleright Goal: characterize weak equivalences, fibrant objects, fibrations between fibrant objects.
- \triangleright Goal: show it is Quillen-equivalent to the Joyal model structure.

What are the cubical analogues of inner horns?

The **inner open box** $\bigcap_{i,\varepsilon}^n$ is $\bigcap_{i,\varepsilon}^n$ with the critical edge quotiented to a point.

Inner cube $\widehat{\Box}_{i,\varepsilon}^n$: the corresponding quotient of \Box^n .

Have an inclusion $\widehat{\sqcap}_{i,\varepsilon}^n \hookrightarrow \widehat{\square}_{i,\varepsilon}^n$.

Cubical quasicategories

A cubical quasicategory is $X \in \text{cSet}$ having the RLP against inner open box fillings.

In particular, this lets us "compose" edges.

Cubical quasicategories

A cubical quasicategory is $X \in \text{cSet}$ having the RLP against inner open box fillings.

In particular, this lets us "compose" edges.

For $X\in$ cSet, a **special open box** in X is $\sqcap_{i,\varepsilon}^n\to X$ sending the critical edge to an equivalence.

Proposition

Cubical quasicategories admit fillers for special open boxes.

Fibrant objects in cSet

Theorem

The fibrant objects in cSet are precisely the cubical quasicategories.

Proof.

Every fibrant object is a cubical quasicategory since inner open box inclusions are trivial cofibrations.

Every cubical quasicategory is the underlying cubical set of a marked cubical quasicategory.

A similar proof shows:

Theorem

Fibrations between fibrant objects are characterized by the RLP against inner open box inclusions and endpoint inclusions $\{\epsilon\} \hookrightarrow K$.

We define homotopy in this model structure using K as a cylinder object, i.e. (right) homotopy of maps $X \rightarrow Y$ is given by maps $X \otimes K \rightarrow Y$.

Theorem

A map $X \rightarrow Y$ is a weak equivalence in cSet if and only if $[Y, Z] \rightarrow [X, Z]$ is a bijection for any cubical quasicategory Z. \Box

Mapping spaces

Let x_0 and x_1 be 0-cubes in a cubical quasicategory X. $\text{Map}_X(x_0, x_1)$ is the cubical set given by

$$
\mathrm{Map}_X(x_0,x_1)_n=\left\{\square^{n+1}\overset{s}{\to}X\mid s\partial_{n+1,\varepsilon}=x_{\varepsilon}\right\},\,
$$

with cubical operations given by those of X .

Example

- a 0-cube in $\text{Map}_X(x_0, x_1)$ is a 1-cube from x_0 to x_1 in X;
- **a** 1-cube in $\text{Map}_X(x_0, x_1)$ is a 2-cube in X of the form

$$
x_0 \xrightarrow{f} x_1
$$

\n
$$
\parallel \qquad \qquad x_0 \xrightarrow{g} x_1
$$

Proposition

Given a cubical quasicategory X and 0-cubes $x_0, x_1 : \Box^0 \to X$, the mapping space $\text{Map}_X(x_0, x_1)$ is a cubical Kan complex.

Triangulation

Theorem

Triangulation and its right adjoint define a Quillen adjunction $T : cSet \rightleftarrows sSet_{\text{Joval}} : U$.

Proof

T preserves cofibrations.

T sends $\{\varepsilon\} \hookrightarrow K$ to a trivial cofibration by direct computation. $T\widehat{\Pi}_{i,\varepsilon}^n \hookrightarrow \widetilde{T\widehat{\Pi}}^n$: use decomposition of $\Pi_{i,\varepsilon}^n \hookrightarrow \Pi^n$ as a pushout product, reduce to open prism filling in sSet.

Triangulation is difficult to work with. It would be hard to show directly that $T \dashv U$ is a Quillen equivalence.

We will develop another adjunction \overline{Q} : sSet \rightleftarrows cSet : \int and show that it is a Quillen equivalence, and that the derived functors of T and Q are inverses.

Cones

To define Q , we develop a theory of **cones** in cubical sets. For $m, n \geq 0$, define the standard (m, n) -cone $C^{m,n}$ inductively as follows:

►
$$
C^{m,0} = \square^m
$$
;
\n► For $n \ge 1$, $C^{m,n}$ is given by the following pushout:
\n $C^{m,n-1} \longrightarrow \square^0$
\n $\partial_{1,1} \otimes C^{m,n-1} \downarrow \qquad \qquad \square^1 \otimes C^{m,n-1} \longrightarrow C^{m,n}$

Each $C^{m,n}$ is a quotient of \Box^{m+n} .

Cones

$Q \dashv \int$

Denote $C^{0,n}$ by Q^n . This defines a cosimplicial object Q^{\bullet} : $\Delta \rightarrow$ cSet.

This extends to a functor $Q:$ sSet \rightarrow cSet by left Kan extension.

Q has a right adjoint \int given by $(\int X)_n = cSet(Q^n, X)$.

Viewing sSet as sSet $\downarrow \Delta^0$ and cSet as cSet ${}^{[0]},\ Q \dashv \int$ coincides with straightening \dashv unstraightening.

$Q \dashv \int$

We'll show that $Q \dashv \int$ is a Quillen equivalence and use this to prove that $T \dashv U$ is a Quillen equivalence.

Theorem

The adjunction $Q : sSet \rightleftarrows cSet : \int sQu$ illen.

Theorem

Q preserves and reflects weak equivalences.

Proof.

Both Q and T preserve weak equivalences.

We can define a natural weak equivalence $TQ \Rightarrow id_{\text{eSet}}$.

$$
TQX \longrightarrow TQY
$$

\n
$$
\downarrow \sim \qquad \qquad \downarrow \sim
$$

\n
$$
X \longrightarrow Y
$$

This shows Q reflects weak equivalences.

The counit of $Q \dashv \int$

Our goal: show that the counit is a trivial cofibration for X a cubical quasicategory.

By (Kapulkin-Lindsey-Wong,2019) $\mathcal{Q} \int X$ is the subcomplex of X whose cubes are those which factor through Q – the "maximal" simplicial subcomplex" of X .

We factor the counit as a series of subcomplex inclusions:

$$
Q\int X = X^1 \hookrightarrow X^2 \hookrightarrow \dots \hookrightarrow X^m \hookrightarrow \dots \hookrightarrow X
$$

Non-degenerate cubes of each X^m are cubes factoring through some $\mathsf{C}^{m',n'}$ with $m'\leq m.$

Each $X^m \hookrightarrow X^{m+1}$ is a transfinite composite of inner open box fillings.

$T \dashv U$ as a Quillen equivalence

Theorem

The adjunction T : cSet \rightleftarrows sSet : U is a Quillen equivalence.

Proof.

The natural weak equivalence $TQ \Rightarrow id_{\mathsf{cSet}}$ becomes a natural isomorphism in the homotopy category. The derived functor of Q is an equivalence of categories, hence so is that of T .