Subadditivity of Syzygies and Related Problems

Outline:

- I. Notation
- II. Constructions
 - a. Idealization
 - b. Bourbaki ideals
- III. Subadditivity
- IV. General bounds on maximal graded shifts of ideals
- V. Open Questions

$$\frac{\left(\begin{array}{c} 0 & 1 & ----i & --- & p\partial(M) \\ \hline & \beta \circ \circ & \beta \circ \circ \\ \vdots & & \vdots \\ & \beta \circ \circ & \beta \circ \circ \\ \hline & \beta \circ \circ & \beta \circ \circ \\ \hline & \beta \circ \circ & \beta \circ \circ \\ \hline & \beta \circ \circ & \beta \circ \circ \\ \hline & \beta \circ \circ & \beta \circ \circ \\ \hline & \beta \circ \circ & \beta \circ \circ \\ \hline & \beta \circ \circ & \beta \circ \circ \\ \hline & \beta \circ \circ & \beta \circ \\ \hline & \beta \circ & \beta \circ & \beta \circ \\ \hline & \beta$$

Q1: What sequences of
$$\overline{E}_i(M)$$
 are
possible?
A1: A1most anything.
A graded S-module is pure if
 $\overline{E}_i(M) = \underline{E}_i(M)$ H:
Thm: (Eisenbud-Flaysted-Weynen 'II
Eisenbud-Schreyer '09
Berkesch-Ernan-Kummini-San'/3
Flaystad '15)
V sequence of integers D: do<di<----de
J a pure (M S-module M with
 $\overline{E}_i(M) = \underline{E}_i(M) = \underline{D}_i$
(M tends to have many generators
in these constructions)

Q1': What sequences
$$\overline{t_i}(\mathscr{I}_{\pm})$$
 are
possible?
(learly not every increasing sequence
of integers is possible.

 $\overline{t_{integers}}$ Take $\underline{d} = (0,1,3,4)$
Suppose $\overline{t_i}(\mathscr{I}_{\pm}) = \underline{d_i}$ $\overline{t_i}$
 $\overline{t_i}(\mathscr{I}_{\pm}) = 1 \implies \underline{T}$ is gen by lin. forms
 $=) \equiv \underline{T}$ is $\cdots = a$ reg.
 $seq. of lin. form$
 $=) \mathscr{I}_{\pm}$ is resolved by
 $a \quad Kos \underline{a} \quad I \quad complex$
 $=) \overline{t_i}(\mathscr{I}_{\pm}) = i \quad \underline{t_i}$

On the other hand, 3 a pore (M module M with max shifts (0,1,3,4)

Some bosics:
(1) Minimality =)
$$\pm_{i-1}(M) < \pm_{i}(M) \forall_{i}$$

(2) $\overline{E}_{i-1}(M) < \overline{E}_{i}(M)$ for $i \leq codim(M)$
(Hind: Try dualizing)
but $\overline{E}_{i-1}(M) \geq \overline{E}_{i}(M)$ is possible
 $\forall i \supset codim(M)$
Silly Example: $S = K \sum x_{i} y_{i} \geq \overline{f}_{i}(x_{i}, y_{i})$
Then $\overline{E}_{i}(M) = (0, 3, 6, 3)$ Betti Tabk:
 $\overline{F} = \frac{10 + 2 \cdot 3}{4 + 2 \cdot 4 \cdot 4}$

SES:

$$O \longrightarrow \frac{T}{A} \xrightarrow{i} \frac{T}{A} \longrightarrow \frac{T}{I} \longrightarrow O$$

$$T \xrightarrow{f} \frac{T}{A} \longrightarrow \frac{T}{I} \longrightarrow O$$

$$T \xrightarrow{f} \frac{T}{A} \longrightarrow \frac{T}{I} \longrightarrow O$$

$$T \xrightarrow{f} \frac{T}{P} \xrightarrow{i} \frac{T}$$

$$\begin{array}{rcl} & P_{ar} \pm \Pi & : & Boonds \\ \hline \mathbf{I} \leq S & is & said to & satisfy the subadditivity \\ \hline & Condition & if \\ \hline & \overline{E_a(S_{\pm})} + \overline{E_b(S_{\pm})} = \overline{E_{a+b}(S_{\pm})} \\ \hline & \overline{E_a(S_{\pm})} + \overline{E_b(S_{\pm})} = \overline{E_{a+b}(S_{\pm})} \\ \hline & \overline{E_{a,b}}. \end{array}$$

and
$$\overline{t}_{a}(R) + \overline{t}_{b}(R) + 1 = \overline{t}_{a+b}(R)$$

Correction (Requires R to also be if char(K)=0
(Auramov - Conca - Iyengar)
(A

Use:
The (Mastroeni - Schenck - Stillman '19)
Let ISS be a graded, quadratic,
Artinian ideal.
$$R = S_{\pm}$$
.
 $W_R = canonical module of R$
 $= Ext_s^n(3/I,S)(-n)$
Assume Ris level, i.e. W_R is gen
in 1 degree.
Set: $r = reg(S/I)_s m = type(S/I) = \mu(W_R)$
(D G = R K $W_R(-r-1)$ is Gorenstein
std. graded, and
 $\cong S [Y_{1,1-1}Y_R]^2 + (E c_iY_i | Ec_{iW_i}=0)$
 $(W_{1,1-1}, W_R - for S-gens of $W_R)$.$

So we need a quadratic, superlead
Artinian ideal with arbitrarily large
degree 1st syzygy:
Take
$$I = (\chi_{1}^{2}, ..., \chi_{2s}^{2}, (\chi_{1} + ... + \chi_{2s}^{2}), \chi_{2s} + Lefschete
element$$

Aside: Bonus: For s=7 get quadratic Gorenstein ideals with Non-Unimodul HFS. (See also Condin- Cappele) (Due also construct quadratic Gorenstein ideals that are not Koszul

What about more general result? Note: If $l \in S_i$ is regular on S_{I} , Bett: table of S_{I} = Bett: table of S_{I} for $S = S_{(R)}$ May assume $depth(S_{I})=0$ ie. $pd(S_{I})=n$. Will do this from now on.

Thm (Eisenbud - Huneke - Ulrich '06) ① If dim (^s⊆) ≤1, then $\overline{t}_{a}(s_{1})+\overline{t}_{b}(s_{2})^{2}\overline{t}_{a}(s_{2})$ Ha, b with atb=n. "weak convexity" If dim(M) ≤ 1, Ann(M) contains a neg. seq of degrees dis..., de then $\overline{E}_n(M) \leq \overline{E}_{n-c}(M) + \geq d_i.$ Open Q: Is " $din(S_T) \leq 1$ " ARCESSARY?

() above =)

 $\frac{1}{\sqrt{2}} \overline{t_n} \left(\frac{s_{\pm}}{2} \right) \leq \min \left\{ \overline{E_n} \left(\frac{s_{\pm}}{2} \right) + \overline{E_n} \left(\frac{s_{\pm}}{2} \right) \right\}$

Thm (-) 12 $\overline{L}_{n}(s_{T}) \leq \max\{\overline{T}_{n}(s_{T}) + \overline{T}_{b}(s_{T})\}$

Thm (Herzog - Srinivasan '13) $\overline{E}_{n}(\frac{3}{2}) \leq \overline{E}_{1}(\frac{5}{2}) + \overline{E}_{n-1}(\frac{5}{2})$ They also showed if I is Monomial $\overline{E}(\frac{5}{4}) + \overline{E}(\frac{5}{4}) = t_{a+1}(\frac{5}{4})$ then

This (-)'18: IES any graded ideal C = CODim (I)Then $\operatorname{reg}(S_{\pm}) \leq \max \{ \{ E_i(S_{\pm}) + (n-i) \} \}$

in particular
$$E_n(S_T) \leq \frac{1}{2}$$

Recall: Ullery's designer ideals /idealizations
gave arbitrary $\overline{b_1}, \dots, \overline{b_{n-c}}$ with
linear tail c steps lors.
Idea: I contains a complete
intersection of firms f_{1,\dots,f_c} of
degree $\leq E_1(S_T)$. Write $R = \frac{S}{(f_{1,\dots,f_c})}$
Form a SES:
 $O \rightarrow K \rightarrow R \rightarrow S_T \rightarrow O$
 $f \qquad T$
 $pd_{S}: n-1 \qquad c \qquad n$
Do reverse induction on pd_{S}
Her apply EHU (2)

Need an inductive statement for modules,
gets messy.
Open Questions:
D Subadditivity fails for (M ideds
when atb=2.
Taking sums can make it fail
for even atb =
$$\frac{n}{2}$$

By EHU D, it holds when atb=n.
In between?
(b) Is $\overline{E_i(S'_{I})} = \max\{i \cdot \overline{E_i(S'_{I})}, \frac{i}{2} \cdot \overline{E_2(S'_{I})}\}$
for I (M?
Question (Constantinescu-Kahle-Urbers)
Is Here a family of quadratic
($\overline{E_i(S'_{I})}=2$) linearly presented

 $\begin{array}{c} \left(\overline{t_{z}}(S_{\perp}) = 3 \right) & \text{ideals with} \\ I_{in} & \underbrace{\operatorname{reg}}(S_{\perp}) \\ n \to \infty & n \end{array} \right) = 0? \\ \end{array}$