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Weierstrass’s Monster

∞∑
n=0

cos(3nπx)

2n

Everywhere continuous

Nowhere differentiable

Hermite 1893: Je me détourne avec horreur et effroi de cette plaie
lamentable des fonctions continues qui n’ont pas de dérivées.

I turn away with horror and dread from this lamentable plague of
continuous functions that have no derivatives.
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Algorithmic Unsolvability and Formal Undecidability

Two related consequences of the work of
Gödel,Church,Kleene,Post,and Turing in the 1930s.

Examples of algorithmic unsolvability are widespread, found in
many branches of mathematics,

Gödel formal undecidability has had no impact on mathematical
practice.

Are formally undecidable propositions necessarily monsters?
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Gödel in 1933

We set out to find a formal system [of axioms] for mathematics
and instead of that found an infinity of systems, and whichever
system you choose . . . there is one . . . whose axioms are stronger,

For any formal system you can construct a proposition – in fact a
proposition of the arithmetic of integers – which is certainly true if
the given system is free from contradictions but cannot be proved
in the given system.

. . . if the system under consideration (call it S) is based on the
theory of types, . . . this proposition becomes a provable theorem if
you add to S the next higher type and the axioms concerning it.

the construction of higher and higher types . . . is necessary for
proving theorems even of a relatively simple structure.
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The Gödel Hierarchy

|
Measurable Cardinals

|
Inacccessable Cardinals

|
Zermelo-Fraenkel

|
ω-Order Number theory

|
Third-Order Number Theory

|
Second-Order Number Theory

|
Peano Arithmetic

|
Primitive Recursive Arithmetic

Martin Davis Here There Be Monsters



Π0
1 Propositions

Π0
1 propositions assert that some computable property of the

natural numbers is true of all natural numbers.

Here is a list of familiar propositions that have this “relatively
simple structure” of which Gödel spoke.

Fermat’s Last Theorem

The Goldbach conjecture

The Riemann Hypothesis

There are no odd perfect numbers

By the MRDP Theorem, each Π0
1 proposition is equivalent to some

polynomial equation with integer coeficients having no natural
number solutions.

So any counter-example could, in principle, be verified by a finite
number of additions and multiplications of integers.
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The Case of Fermat’s Last Theorem

The published proof uses Grothendieck universes which can be
formalized in the lower transfinite level of the Gödel hierarchy.

Nevertheless, the proof was generally accepted.

Colin McLarty has shown how to formalize the proof in third-order
arithmetic.

Is it provable in PA?

Might one be able to obtain a model of PA in which FLT is false?
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An Example from Harvey Friedman: (indepennce from
ZFC)

Proposition HF: If S is an order invariant subset of Q2n
r , then

there is a rigid maximal square in S .
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An Example from Harvey Friedman

Definition

Qr is the set of rational numbers q such that | q |≤ r . This
discussion is in terms of elements and subsets of Q2n

r . For x ∈ Q2n
r

the i-th component of x is written xi .

S is a square if S = A× A where A ⊆ Qn
r . A square S is a

maximal square in U if S ⊆ U and there is no square T for which
S ⊂ T ⊆ U.

x ≈ y if xi < xj ⇔ yi < yj for i , j = 1, 2, . . . , 2n.
S is order invariant if x , y ∈ S and x ≈ y implies y ∈ S .

x is pointy if each xi for which xi ≥ 0 is an integer.
x ∼ y if x , y are pointy, xi < 0⇔ yi < 0, if xi < 0 then xi = yi ,
and if xi , xj ≥ 0 then xi ≤ xj ⇔ yi ≤ yj

S is rigid if x ∈ S and x ∼ y implies y ∈ S
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An Example from Harvey Friedman (continued)

Proposition HF: If S is an order invariant subset of Q2n
r , then

there is a rigid maximal square in S .

SRP( (Stationary Ramsey Property) names a particular cardinal
number that is much too large for its existence to be provable in
ZFC, but such that the existence of a measurable cardinal proves
the consistency of ZFC + Existence of SRP.

con(SRP) is the Π0
1 sentence obtained fron Gödel arithmetization

of the statement “[ZFC + Existence of SRP] is consistent”.

Theorem: If [ZFC + Existence of SRP] is consistent, then HF
⇐⇒ con(SRP).

Corollary: If [ZFC + Existence of SRP] is consistent, then, HF is
not provable in ZFC, but is provable from ZFC + existence of a
measurable cardinal.

Note: Much more can be said about the place of SRP in the large
cardinal hierarchy.
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The Riemann Hypothesis

ζ(z) =
∞∑
n=1

1

nz
for Rz > 1

The functional equation:

ζ(1− z) = 21−zπ−z cos(πz/2)Γ(z)ζ(z)

The Riemann Hypothesis:

If 0 < Rz < 1 and ζ(z) = 0 then Rz = 1/2.

The Riemann Hypothesis is provably equivalent to a Π0
1 statement.

Gödel in 1951 on contemporary mathematics using only the lowest
levels of what I am calling the Gödel Hierarchy:“this . . . may have
something to do with . . . [the] inability to prove . . . for example
Riemann’s hypothesis despite many years of effort.”
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levels of what I am calling the Gödel Hierarchy:“this . . . may have
something to do with . . . [the] inability to prove . . . for example
Riemann’s hypothesis despite many years of effort.”

Martin Davis Here There Be Monsters



The Riemann Hypothesis

ζ(z) =
∞∑
n=1

1

nz
for Rz > 1

The functional equation:

ζ(1− z) = 21−zπ−z cos(πz/2)Γ(z)ζ(z)

The Riemann Hypothesis:

If 0 < Rz < 1 and ζ(z) = 0 then Rz = 1/2.

The Riemann Hypothesis is provably equivalent to a Π0
1 statement.
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