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Elementary first order formulas

Elementary first order formulas are formulas of the usual
kind—finitely long, with quantifiers ranging over elements. Here
are some of the familiar elementary first order axioms for ordered
fields.

I (∀x)(∀y)(∀z) x + (y + z) = (x + y) + z

I (∀x)[x 6= 0→ (∃y)x · y = 1]

I (∀x)(∀y)(∀z)((x < y & y < z)→ x < z)



Complexity

Fact: We can put any elementary first order formula into
prenex normal form, bringing the quantifiers outside.

We measure complexity of formulas in prenex normal form by the
number of alternations of ∃ and ∀.

Classification. A formula in prenex normal form is Σn, Πn, if it
has n blocks of like quantifiers, starting with ∃, ∀.



Definable sets, relations

Convention. We identify a structure A with its atomic diagram
D(A). For A with universe a subset of ω, we identify D(A) (via
Gödel numbering) with a subset of ω, or with χD(A).

Notation. For a formula ϕ(x̄), we write ϕA for the relation on A
defined by ϕ(x̄).

Facts:

1. If ϕ(x̄) is existential, then ϕA is computably enumerable
relative to A.

2. For an operation F , if the relation F (x̄) = y is defined by an
existential formula, then so is the relation F (x̄) 6= y—we say
(∃z)(z 6= y & F (x̄) = z).



Formulas of Lω1ω

Lω1ω is a version of infinitary logic that allows countably infinite
disjunctions and conjunctions, but only finite strings of quantifiers.

Example. To say of an ordered field that it is Archimedean, we
write the Lω1ω-formula (∀x)

∨
n x < 1 + · · ·+ 1︸ ︷︷ ︸

n

.

Normal form. For an Lω1ω-formula, we cannot, in general, bring
the quantifiers to the front. However, we can bring the negations
inside. This gives a kind of normal form.

We classify Lω1ω-formulas in this normal form according to the
number of alternations of

∨
(∃) and

∧
(∀).



Complexity of Lω1ω-formulas

1. ϕ(x̄) is Σ0 and Π0 if it is finitary quantifier-free,

2. for a countable ordinal α > 0,

(a) ϕ(x̄) is Σα if it has form
∨

i (∃ūi )ψi (x̄ , ūi ), where each ψi is
Πβi for some βi < α,

(b) ϕ(x̄) is Πα if it has form
∧

i (∀ūi )ψi (x̄ , ūi ), where each ψi is
Σβi for some βi < α



Computable infinitary formulas

The computable infinitary formulas are infinitary formulas in which
the infinite disjunctions and conjunctions are over c.e. sets. Such
formulas are in some sense “comprehensible.” We classify these
formulas as computable Σα, computable Πα, where α ranges over
computable ordinals.

A computable Σ1 formula is a c.e. disjunction of finitary existential
formulas.

Fact: The relation defined in a structure A by a computable Σ1

formula is c.e. relative to A.



Second order formulas

Second order formulas allow quantifiers ranging over sets.

Example. To characterize the ordered field of reals, up to
isomorphism, we add to the elementary first order axioms for
ordered fields the second order Completeness Axiom, stated below
using some abbreviations.

I N(X ) = (∃y)Xy says X is non-empty.

I B(X , u) = (∀y)(Xy → y ≤ u) says u is an upper bound for X .

I L(X , v) = B(X , v) & (∀u)(B(X , u)→ v ≤ u).

I (∀X )[(N(X ) & (∃u)B(X , u))→ (∃v)L(X , v)].



Examples of definable sets

1. Lagrange. The set N is defined in the ring Z by the existential
(Σ1) formula (∃y1)(∃y2)(∃y3)(∃y4) x = y2

1 + y2
2 + y2

3 + y2
4 .

2. The set of integers is defined in the field Q.

(a) There is a computable Σ1 definition
∨

i ϕi∈Z(x), where ϕi (x) is
a natural quantifier-free formula saying that x is the integer i ,

(b) J. Robinson. There is an elementary first order definition,
with several alternations of quantifiers.

(c) Königsmann. There is a universal (Π1) definition.



Defining one structure in another

For simplicity, suppose A = (A,Ri ) is relational.

Definition. A is defined in B if there are formulas that in B define
a set D and relations R∗i on D s.t. (D,R∗i ) ∼= A.

Example. The field C is defined in the field R as follows:

I D is the set of ordered pairs (a, b) ∈ R2—think of (a, b) as
a + bi ,

I +∗ is the set of (a, b)(a′, b′)(a′′, b′′) s.t. a′′ = a + a′ and
b′′ = b + b′,

I ·∗ is the set of (a, b)(a′, b′)(a′′, b′′) s.t. a′′ = aa′ − bb′ and
b′′ = ab′ + a′b.



Interpreting one structure in another

Definition. A = (A,Ri ) is interpreted in B if there are formulas
that in B define a set D, relations R∗i on D, and a congruence
relation ∼ on (D,R∗i ), s.t. (D,R∗i )/∼ ∼= A.

Example. The field Q is interpreted in the ring Z as follows:

I D = {(a, b) : b 6= 0}—think of (a, b) as a
b ,

I (a, b) ∼ (a′, b′) if ab′ = a′b,

I +∗ is the set of (a, b)(a′, b′)(a′′, b′′) s.t.
(a′′, b′′) ∼ (ab′ + a′b, bb′),

I ·∗ is the set of (a, b)(a′, b′)(a′′, b′′) s.t. (a′′, b′′) ∼ (a · a′, b ·b′).



Generalized computable Σ1 formulas

Definition. A generalized computable Σ1 formula is a c.e.
disjunction of finitary existential formulas, possibly of different
arities.

Example. Linear dependence in Q-vector spaces is defined by a
generalized computable Σ1 formula.

Fact: The relation defined in a structure B by a generalized
computable Σ1 formula is c.e. relative to B.



Effective interpretation

Definition (Montalbán). A = (A,Ri ) is effectively interpreted in
B if there exist D ⊆ B<ω, relations R∗i and a congruence relation
∼ s.t. (D,R∗i )/∼ ∼= A, and D, R∗i , ¬R∗i , ∼, and 6∼ are all defined
by generalized computable Σ1 formulas, with no parameters.

Note: If Ri is the relation F (x̄) = y , where F is an operation, we
get a generalized Σ1-definition for ¬R∗i from those for R∗i and 6∼.

Fact. If there is an effective interpretation of A in B, then there is
a Turing operator Φ that takes each copy of B to a copy of A.



Somewhat disturbing

Fact. If A is a computable structure, then A is effectively
interpreted in any structure B.

Proof: For simplicity, suppose A = (ω,R), where R is binary. Let
D = B<ω. Let b̄ ∼ b̄′ if b̄ and b̄′ have the same length. Let R∗

consist of the pairs of tuples (b̄, c̄) s.t. b̄ has length m, c̄ has
length n, and (m, n) ∈ R.



Computable functor

Definition (R. Miller). A computable functor from B to A is a
pair of Turing operators Φ,Ψ s.t.

1. Φ takes copies of B to copies of A,

2. for each triple (B′, f ,B′′) s.t. B′,B′′ ∼= B and B′ ∼=f B′′,
Ψ(B′, f ,B′′) is an isomorphism from Φ(B′) to Φ(B′′),

3. Ψ preserves identity and composition; i.e.,

I if f is the identity on B′, then Ψ(B′, f ,B′) is the identity on
Φ(B′),

I if Ψ(B, f ,B′) = g and Ψ(B′, f ′,B′′) = g ′, then
Ψ(B, f ′ ◦ f ,B′′) = g ′ ◦ g .



Equivalence

Theorem (Harrison-Trainor-Melnikov-R. Miller-Montalbán).
There is an effective interpretation of A in B iff there is a
computable functor from B to A.

Note: In the proof, it is important that D consists of tuples of
arbitrary length—the formulas that define ∼, 6∼, R∗i , ¬Ri

∗ are
generalized computable Σ1.



Heisenberg group

For a field F , the Heisenberg group H(F ) is the group of matrices

h(a, b, c) =

 1 a c
0 1 b
0 0 1

 ,
where a, b, c ∈ F .

Operation: matrix multiplication.

Identity: h(0, 0, 0) =

 1 0 0
0 1 0
0 0 1

.



More on the Heisenberg group

1. H(F ) is not Abelian; for example,

h(1, 0, 0) =

 1 1 0
0 1 0
0 0 1

, h(0, 1, 0) =

 1 0 0
0 1 1
0 0 1


do not commute.

2. The center consists of the elements

h(0, 0, a) =

 1 0 a
0 1 0
0 0 1

.



Maltsev definition, using parameters

We write 1 for the group identity and [x , y ] for the commutator
x−1y−1xy .

Maltsev. For a field F , let u = h(u1, u2, u3), v = h(v1, v2, v3) be a
non-commuting pair in H(F ). There is a copy F(u,v) of F defined
in H(F ), with parameters (u, v), as follows:

1. D is the center—x ∈ D iff [x , u] = [x , v ] = 1,

2. + is the group operation,

3. x · y = z if there exist x ′, y ′ s.t. [x ′, u] = [y ′, v ] = 1,
[x ′, v ] = x , [u, y ′] = y , and [x ′, y ′] = z .



Isomorphism from F to F(u,v)

Let F(u,v) be the copy of F defined in H(F ) with parameters
(u, v), where u = h(u1, u2, u3), v = h(v1, v2, v3). Let

∆(u,v) =

∣∣∣∣ u1 v1

u2 v2

∣∣∣∣ .
Proposition (Maltsev, Morozov). F ∼=g(u,v)

F(u,v), where

g(u,v)(α) = h(0, 0, α ·∆(u,v)).



Parameters needed

Proposition. For all fields F , F cannot be defined in H(F )
without parameters (using formulas with fixed arity).

Proof: If we had a copy of F defined in H(F ), then every
automorphism of H(F ) would induce an automorphism of the copy,
fixing the elements (or tuples), that represent 0 and 1. However,
the only element of H(F ) fixed by all automorphisms is 1, and the
only n-tuple fixed by all automorphisms is (1, . . . , 1︸ ︷︷ ︸

n

).



Recovering a copy of F from a copy of H(F )

Proposition. There is a uniform Turing operator Φ that, for all F ,
takes copies of H(F ) to copies of F .

Proof: We look for a non-commuting pair (u, v) in G , and, for the
first we find, take the copy of F defined using these parameters.



Computable functor from H(F ) to F

We have a uniform Turing operator Φ that takes copies of H(F ) to
copies of F . This is half of a computable functor. Using the
following, we get the other half.

Lemma. There is an existential formula ψ(u, v , u′, v ′, x , y) that,
for any non-commuting pairs (u, v) and (u′, v ′) in H(F ), defines
an isomorphism f(u,v),(u′v ′) from F(u,v) to F(u′,v ′). Moreover, the
family of isomorphisms is functorial—f(u,v),(u,v) is the identity and
f(u′,v ′)(u′′,v ′′) ◦ f(u,v),(u′,v ′) = f(u,v)(u′′,v ′′).

Proposition. There is a computable functor from H(F ) to F .



Effective interpretation of F in H(F )

Completing the First Proof: We have a computable functor
from H(F ) to F . Applying the theorem of HTMMM, we get the
existence of an effective interpretation of F in H(F ).

The proof of HTMMM gives an interpretation in which D consists
of tuples of arbitrary arity, and D, ∼, 6∼, and the operations are
defined by generalized computable Σ1-formulas.

There is a second proof, explicitly defining an interpretation.



Explicit definition
Proposition. There are finitary existential formulas, with no
parameters, that for all fields F , define an interpretation of F in
H(F ).

Proof:

1. D is the set of (u, v , x) ∈ H(F ) s.t. [u, v ] 6= 1 and
[x , u] = [x , v ] = 1,

2. (u, v , x) ∼ (u′, v ′, x ′) if f(u,v)(u′,v ′)(x) = x ′,

3. (u, v , x) 6∼ (u′, v ′, x ′) if f(u,v)(u′,v ′)(x) 6= x ′,

4. +∗((u, v , x), (u′, v ′, y), (u′′, v ′′, z)) if there exist y ′, z ′ s.t.
(u, v , y ′) ∼ (u′, v ′, y), (u, v , z ′) ∼ (u′′, v ′′, z), and
M(u,v) |= x + y ′ = z ′,

5. ·∗((u, v , x), (u′, v ′, y), (u′′, v ′′, z)) if there exist y ′, z ′ s.t.
(u, v , y ′) ∼ (u′, v ′, y), (u, v , z ′) ∼ (u′′, v ′′, z), and
M(u,v) |= x · y ′ = z ′.



What have we accomplished?

Starting with Maltsev’s definition of a copy F(u,v) of F in H(F ),
which used an arbitrary non-commuting pair (u, v) as parameters,
we found uniform finitary existential formulas, with no parameters,
that, for all fields F , define an interpretation of F in H(F ).

We used the fact that there are existential formulas defining:

1. the set of parameter pairs (u, v),

2. a nice family of isomorphisms f(u,v)(u′,v ′).



General result

Theorem. Suppose there are existential formulas, with parameters
b̄, that effectively define a copy of A in B.2 Suppose the orbit of b̄
is defined by an existential formula. For c̄ in the orbit of b̄, let Ac̄

be the copy of A obtained with parameters c̄ . Suppose that there
is a formula ψ(ū, v̄ , x , y) s.t. for all c̄ , d̄ in the orbit of b̄,
ψ(c̄ , d̄ , x , y) defines an isomorphism fc̄,d̄ from Ac̄ onto Ad̄ .
Finally, suppose the family of isomorphisms is functorial (preserving
identity and composition). Then there is an interpretation of A in
B defined by existential formulas with no parameters.

2If the language of A includes relation symbols Ri , we require existential
formulas defining both Ri and ¬Ri .



Generalizing further

We may replace the given definition (with parameters) by an
interpretation (with parameters). We may replace the existential
formulas by computable Σ1 formulas, or generalized computable
Σ1 formulas, or Lω1ω formulas, or generalized Lω1ω formulas. In
each case, the complexity of the output formulas, with no
parameters, matches that of the input formulas.



SL2(C)

SL2(C) is the set of 2× 2 matrices over C with determinant 1. We
can define C in SL2(C) with parameters.

The theory of SL2(C) is ω-stable. Old results of Poizat yield
(according to Pillay) an interpretation using elementary first order
formulas without parameters. But, we don’t know the complexity
of the interpreting formulas.

Question. Is C interpreted in SL2(C) using existential formulas,
with no parameters?



Bi-interpretability

We have (uniform) formulas that define H(F ) in F and interpret F
in H(F ). Bi-interpretability asks more. We need definable
isomorphisms from F to the copy of F interpreted in the natural
copy of H(F ) defined in F , and from H(F ) to the copy of H(F )
defined in the copy of F interpreted in H(F ). Montalbán asked
whether we have effective bi-interpretability. If we had
bi-intepretability, then the automorphism groups of F and H(F )
would be isomorphic. For Q, the automorphism group is rigid,
while H(F ) is never rigid.

Question. Is there any field F such that F and H(F ) are
bi-interpretable?


