
DDC Online Seminar, MSRI

October 9, 2020

Effective Ultrapowers

Valentina Harizanov

joint with Rumen Dimitrov, Andrei Morozov, Paul Shafer,

Alexandra Soskova and Stefan Vatev



Models and theories

• A non-standard model is a model of a theory, which is not isomorphic

to the intended, standard model.

• Every model consists of a nonempty set of elements, called the domain,

with certain functions (operations), relations and constants on the

domain.

• For example, the standard model of Peano arithmetic,N = (ω, 0, S,+, ·),

consists of the set ω = {0, 1, 2, 3, . . .} with the constant 0, successor

function S, and operations of addition + and multiplication ·



• The standard order of natural numbers is N = (ω,<).

• The first-order formulas are built using function, relation and constant
symbols, variables (denoting the elements of the domain), Boolean
propositional symbols (for negation, conjunction, disjunction, impli-
cation and equivalence), and universal and existential quantifiers for
variables.

• A sentence is a formula with no free variables (i.e., all variables are
quantified).

• A theory is a set of sentences. Every model has its (complete) theory.

• For example, complete number theory is the set of all first-order
sentences true in the standard model of arithmetic.



Ultraproduct

• Let (Ai)i∈ω be a sequence of structures for the same language L.

Note: ω can be replaced by another nonempty index set I.

• An ultrafilter U over ω is a certain set of subsets of ω.

• An ultraproduct is a direct product of structures (Ai)i∈ω modulo U ,

in symbols B =
∏
U Ai.

• For f, g ∈ B, we have f =U g iff {i : f(i) = g(i)} ∈ U

The equivalence class of f is denoted by [f ].



• An ultrafilter U over ω satisfies the following properties for

all X,Y :

1. ω ∈ U

2. (X ∈ U & X ⊆ Y ⊆ ω)⇒ Y ∈ U

3. (X ∈ U & Y ∈ U)⇒ X ∩ Y ∈ U

4. X ∈ U ⇔ X = ω −X /∈ U

• U is a principal ultrafilter if there is i ∈ ω such that:

U = {X : X ⊆ ω & i ∈ X}

• An ultrafilter U is nonprincipal iff for every i ∈ ω, {i} /∈ U .



• A nonprincipal ultrafilter U over ω contains all co-finite subsets of ω.

• Theorem (Zorn’s Lemma)

There is a nonprincipal ultrafilter over any infinite set I.

• In B =
∏
U Ai, we define its functions, relations and constants as

follows.

• For an n-ary function symbol F :

FB([f1], . . . , [fn]) = [g], where for every i,

g(i) = FAi(f1(i), . . . , fn(i))



• For an m-ary relation symbol R :

RB([f1], . . . , [fm]) iff {i ∈ ω : RAi(f1(i), . . . , fm(i))}∈ U

• For a constant symbol c :

cB = [f ] where for every i, f(i) = cAi

• Fundamental Theorem ( Loś)

If α(x1, . . . , xn) is a formula in L, then:

B |= α([f1], . . . , [fn]) iff {i : Ai � α(f1(i), . . . , fn(i))} ∈ U

• Hence, if σ is a sentence then: B |= σ iff {i : Ai � σ} ∈ U



• If Ai = A, then the ultraproduct
∏
U A is called ultrapower.

• Corollary∏
U A and A are elementarily equivalent.

(Have the same first-order theory.)

Effective ultrapower

• A structure is computable, and ultrafilters are replaced by infinite sets

from computability theory, which are indecomposable with respect to

computably enumerable sets.

The elements of the product are equivalence classes of partial

computable functions.



Computable structures

• A set is computable if there is a decision algorithm that recognizes its
elements and non-elements.

• A countable structure A for a finite (more generally, computable)
language L is computable if its domain is computable and its relations
and functions are computable (uniformly computable).

• Examples of computable structures

The ordered set of natural numbers, N (of order type ω)
The ordered set integers, Z
The ordered set of rational numbers, Q
The additive group of integers, (Z,+, 0)
The field of rational numbers, (Q,+, ·, 0, 1)



• Example of a non-computable structure

Let X be a non-computable set.

Define a linear order ({0, 1, 2, . . .}, ≺) isomorphic to N
(of order type ω):

2n ≺ 2n+ 1 if n ∈ X
2n+ 1 ≺ 2n if n /∈ X

2n, 2n+ 1 ≺ 2n+ 2, 2n+ 3

• If this order were computable, X would be computable,

which is a contradiction.

• (Tennenbaum)

There is no computable non-standard model of Peano arithmetic.



Computably enumerable sets

• A set X 6= ∅ of natural numbers is computably enumerable

(abbreviated by c.e.) if there is an algorithm that generates it by

enumerating (listing) its elements.

• If X is finite or its elements can be algorithmically enumerated in

strictly increasing order, then X is computable.

• C.e. sets coincide with Diophantine sets.

• A set X is computable iff X and its complement X are both c.e.

There are many non-computable c.e. sets.



Partial computable functions

• Let P0, P1, ..., Pe, ... be an algorithmic enumeration (given by

systematic listing) of all Turing machine programs.

• Turing machine program Pe computes a partial computable (possibly

total, thus computable) function ϕe:

on input x, it halts and outputs its value, in symbols ϕe(x) ↓,
when x ∈ dom(ϕe), or it computes forever, in symbols ϕe(x) ↑,
when x /∈ dom(ϕe).

• It can be shown that c.e. sets are exactly the domains of these

partial functions.



• Hence we have algorithmic enumeration of all c.e. sets as domains of

partial functions computed by Turing machine programs:

W0,W1, ...,We, ...

• Turing (diagonal) halting set, H = {e : e ∈We} is a non-computable

c.e. set.

• Proof that H is non-computable. Assume otherwise.

Then H is c.e., so H = Wj for some j.

j ∈ H ⇔ j ∈Wj ⇔ j ∈ H



C.e.-indecomposable sets

• A set C ⊆ ω is c.e.-indecomposable if C is infinite and for every c.e.

set W , either W ∩ C or W ∩ C is finite.

Hence

W ∩ C is infinite ⇒ C ⊆∗ W
W ∩ C is infinite ⇒ C ⊆∗ W

⊆∗ stands for inclusion of all but finitely many elements

• Every infinite set of natural numbers has a c.e.-indecomposable subset.



Effective ultrapowers

• Let A be a computable structure with domain A,

and let C ⊆ ω be a c.e.-indecomposable set.

The effective ultrapower of A over C, in symbols B = ΠCA,

has the domain (D mod =C) where

D = {ϕ | ϕ : ω → A is partial computable and C ⊆∗ dom(ϕ)}.

For ϕ,ψ ∈ D, define

ϕ =C ψ iff C ⊆∗ {i : ϕ(i) ↓= ψ(i) ↓}.

The equivalence class of ϕ is denoted by [ϕ].



• If F is an n-ary function symbol, then

FB([ϕ1], . . . , [ϕn]) = [ϕ],

where for every i ∈ ω,

ϕ(i) = FA(ϕ1(i), . . . , ϕn(i)),

equal as partial functions.

• If R is an m-ary relation symbol, then

RB([ϕ1], . . . , [ϕm]) iff C ⊆∗ {i ∈ ω : RA(ϕ1(i), . . . , ϕm(i))}

• If c is a constant symbol, then cB is the equivalence class of

the computable function with constant value cA.



• Canonical embedding of A into ΠCA: a→ [θa],

where θa = (a, a, ...).

• For a finite structure A, we have ΠCA ∼= A.

Proof. Let [ϕ] ∈ ΠCA.

For a ∈ A, let Xa = {i ∈ dom(ϕ) : ϕ(i) = a}.

Xa is c.e. because it is enumerated by the procedure that

simultaneously runs Turing machine program for ϕ on 0, 1, ..., k for

bigger and bigger k’s and for more and more computational steps,

and whenever ϕ on i halts and outputs a, we enumerate i into Xa.

Since A is finite, C is infinite, and C ⊆∗ dom(ϕ), for some b ∈ A,

Xb ∩ C is infinite.

Hence C ⊆∗ Xb, so [ϕ] = [θb].



• For an infinite computable structure M, the effective ultrapower

ΠCM and M are not necessarily elementarily equivalent.

• If A and B are computably isomorphic, then ΠCA ∼= ΠCB.

• Proof. Let f : A 7→ B be a computable isomorphism.

Let [ϕ] ∈ ΠCA.

Define an isomorphism G of effective ultrapowers by

G([ϕ]) = [f ◦ ϕ].



Preservation of satisfaction

• Fundamental Theorem (Dimitrov)

(i) If α(x1, . . . , xn) is a formula that is a Boolean

combination of ∀ (or ∃) formulas, then

ΠCA � α([ϕ1], . . . , [ϕn]) iff C ⊆∗ {i : A � α(ϕ1(i), . . . , ϕn(i))}

(ii) If σ is a ∀∃ (or ∃∀) sentence, then

ΠCA � σ iff A � σ

(iii) If σ is a ∀∃∀ sentence, then

if ΠCA � σ then A � σ



• If a computable structure A is from one of the following classes, then

so is its effective ultrapower ΠCA:

• rings

• (algebraically closed) fields

• lattices

• (atomless) Boolean algebras

• (dense) linear orders (without endpoints)

• There are ∀∃∀ sentences true in some computable A, but not in ΠCA
for some C.



• (Feferman, Scott and Tennenbaum)

There is a ∀∃∀ sentence (involving Kleene’s T predicate), which is true

in N , the standard model of arithmetic, but not in ΠCN for some C.

• Proof sketch.

Let Pe be the e-th Turing machine program.

In Kleene’s T (e, x, z), x is the input, and z codes the output and the

number s of computation steps.

Consider the statement:

(∀x)(∃s)(∀e ≤ x) [Pe(x) ↓ ⇒ Pe,s(x) ↓]



Effective ultrapowers of linear orders

• We use + for the sum and × for the lexicographical product of

two linear orders.

• We can show that for N, we have ΠCN ∼= N+ (Q× Z).

• Assume that L, L1, L2 are computable linear orders, and

Lrev is the reverse of L.

ΠC (L0 + L1) ∼= ΠCL0 + ΠCL1

ΠC (L0 × L1) ∼= ΠCL0 × ΠCL1

ΠCLrev ∼= (ΠCL)rev



• For example,

ΠCNrev ∼= (ΠCN)rev ∼= (N+ (Q× Z))rev ∼= (Q× Z) + Nrev

• Similarly,

ΠCZ ∼= ΠC(Nrev + N) ∼= Q× Z

• Let L be a computable dense linear order without endpoints.

Then ΠCL ∼= L.

• Proof. The theory of dense linear orders without endpoints is

∀∃-axiomatizable and countably categorical

(has only one countable model, up to isomorphism).

ΠCL is countable, so ΠCL ∼= L.



When the successor function is computable

• Let M be a computable linear order of order type ω, with

a computable successor function. Then for every

c.e.-indecomposable C, we have ΠCM∼= N + (Q× Z).

M is computably isomorphic to the standard model N.

• Having a computable successor function is not necessary

for this order type of an effective ultrapower.

• There is a computable linear order A of order type ω, with

a non-computable successor function, such that for every

c.e.-indecomposable C, we have ΠCA ∼= N + (Q× Z).



When ΠCL � N+ (Q× Z)

• Let C be a c.e.-indecomposable set. There is a computable linear order

L of order type ω such ΠCL and N + (Q × Z) are not elementarily

equivalent.

• Proof. Construct a computable linear order L = (X,<L) of order

type ω.

Assure that if ϕ is a partial computable function such that

[id] <ΠCL
[ϕ], then [ϕ] is not the <ΠCL

-immediate successor of [id].



• Construction

• Fix an infinite computable set R ⊆ C.

• X0 = {0}

• At stage s > 0, we have that <L is defined on some finite

Xs−1 ⊇ {0, 1, . . . , s− 1}.

• If s /∈ Xs−1, then put s in Xs and extend <L to make s

the <L-greatest element.



Consider each 〈e, n〉 < s in order. If

• ϕe,s(n) ↓∈ Xs,

• ϕe(n) is currently the <L-immediate successor of n in Xs,

• n /∈ R, and

• n is not <L-below any of 0, 1, . . . , e.

Then let m be the least element of R−Xs.

• Add m to Xs and extend <L so that n <L m <L ϕe(n).



• It follows that ΠCL and N+ (Q× Z) are not elementarily equivalent

because every element of N + (Q × Z) has an immediate successor,

but [id] ∈ ΠCL does not have an immediate successor.

• The sentence σ that states that every element has an immediate

successor is ∀∃∀. Then for the computable linear order L of type ω,

constructed above, we have L � σ but ΠCL � ¬σ.



When c.e.-indecomposable sets are co-maximal

• A set M ⊆ ω is maximal if M is c.e. and its complement M = C is

c.e.-indecomposable.

Equivalently, M is c.e., M is infinite, and for every

c.e. set W with M ⊆W ⊆ ω, either ω −W or W −M is finite.

• For every [ϕ] ∈ ΠCA, there is a (total) computable function f

such that [f ] = [ϕ].

• Proof. Define f̂(n) =

{
ϕ(n) if ϕ(n) ↓ first,

0 if n is enumerated into M first.

f̂(n) is defined for all but finitely many n.



• Let C be a co-maximal set. Then there is a computable linear order

L of order type ω such that ΠCL ∼= N+ Q.

• There is a countable set of computable linear orders of order type ω,

which are pairwise non-elementarily equivalent.

• It is possible for non-elementarily equivalent computable linear orders

to have isomorphic effective ultrapowers.



• Let X be a non-empty at most countable set of order types.

Let |X | be the size of X .

• The shuffle sh(X ) is obtained by densely coloring Q with |X | many

colors, assigning each order type in X with a distinct color and

replacing each q ∈ Q with the order type corresponding to the color

of q.

• Let C be a co-maximal set.

• Let k0, ..., kn be positive natural numbers, and k0, ...,kn the

corresponding ordered sets.

k is 0 < 1 < · · · < k − 1



• There is a computable linear orderM of order type ω such that ΠCM
has order type ω + sh(k0, ...,kn).

• Let X be a ∀∃ or ∃∀ (possibly infinite) set of finite non-empty order

types. Then there is a computable linear order L of order type ω such

that ΠCL has order type ω + sh(X ∪ {N+ (Q× Z) + Nrev}).



THANK YOU!


