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The two theorems

DPR-theorem (Martin Davis, Hilary Putnam, Julia Robinson [1961]).
Every effectively enumerable set O of n-tuples of natural numbers has an
exponential Diophantine representation of the form

(a1,...,an) €EM<=3x1 ... Xm
{E1(a1,--,an, X1,y Xm) = Ea(a1,...,an, X1, ..., Xm)}
where Ei(a1,...,an,x1,...,Xm) and Ex(a1,...,apn, X1,...,Xm) are

expression constructed by combining the variables and particular natural
numbers using the traditional rules of addition, multiplication and
exponentiation.

An improvement of DPR-theorem (DPRM-theorem [1970]). Every
effectively enumerable set 9 of n-tuples of natural numbers has a
Diophantine representation

<al7...,a,,> E9ﬁ<:>EIx1...xm{P(al,...,a,,,xl,...,xm) :0}

where P(ay,...,an,X1,...,Xm) Is a polynomial with integer coefficients.
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Part 1. Proofs



Original proof of DPRM-theorem

DPRM-theorem. Every effectively enumerable set O has a Diophantine
representation

Step 1.
Step 2.
Step 3.

Step 4.

Construct of an arithmetical formula with many bounded
universal quantifiers (after Kurt Godel)

Transform this formula into Davis normal form with single
bounded universal quantifier

Eliminate the single bounded universal quantifier through
the use of exponential Diophantine equation

Transform the exponential Diophantine equation into an
equivalent Diophantine equation

g 4 "ot 4 "3" — DPR-theorem

DPR 4+ "4" = DPRM-theorem



An alternative version of the original proof of
DPRM-theorem

DPRM-theorem. Every effectively enumerable set 9 has a Diophantine
representation

Step 1. Construct of an arithmetical formula with many bounded
universal quantifiers (after Kurt Godel)

Step 2. REPEAT:
Step 3. Eliminate the innermost bounded universal quantifier
through the use of exponential Diophantine equation
Step 4. Transform the exponential Diophantine equation into an
equivalent Diophantine equation



Step 3. Elimination of bounded universal quantifier

1959 Martin Davis and Hilary Putnam: conditional technique under the
assumption of the existence of arbitrary long non-constant
arithmetical progressions consisting entirely of prime numbers (the
existence proved by Ben Green and Terence Tao in 2004)

1960 Julia Robinson: unconditional technique using arbitrarily long
arithmetical progressions with large prime factors

1972 Yuri Matiyasevich: instead of prime numbers one can use
multiplicative version of Dirichlet principle

1993 Yuri Matiyasevich: a completely different technique (the bounded
universal quantifier is replaced by summation)



Step 1. Arithmetization

DPR-theorem. Every effectively enumerable set O has an exponential
Diophantine representation

Step 1. Construct of an arithmetical formula with many bounded
universal quantifiers (after Kurt Godel)

Step 2. Transform this formula into Davis normal form with single
bounded universal quantifier

Step 3. Eliminate the single bounded universal quantifier through
the use of exponential Diophantine equation

"W 4 "2 4 "3" = DPR-theorem



Step 1. Purely existential arithmetization

DPR-theorem. Every effectively enumerable set O has an exponential
Diophantine representation

Step 1. Construct of an arithmetical formula presenting given
effectively enumerable set without using universal
quantifiers

1" = DPR-theorem

Purely existential arithmetization was done for:
e Turing machines (Yu. Matiyasevich 1976, 1993)
e register machines (J. P. Jones and Yu. Matiyasevich 1983)
e partial recursive functions (Yu. Matiyasevich 1994)

e universal technique of existential arithmetization
(Yu. Matiyasevich 2009)



Step 4. Elimination of exponentiation

Original technique:

1952 Julia Robinson: a sufficient condition for the possibility to perform
such transformation

1970 Yuri Matiyasevich: the fulfillment of this condition by the sequence of
Fibonacci numbers

Modern technique: usage of the second order recurrent sequence of
solutions of Pell equation

A slight modifications: some third and fourth order recurrent sequences
could be used (Maxim Vsemirnov 1995, 1997)



Computer verification of DPRM-theorem
Karol Pak

The Matiyasevich Theorem. Preliminaries
Formalized Mathematics, 25(4):315-322, 2017.
Diophantine sets. Preliminaries
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Benedikt Stock, Abhik Pal, Maria Antonia Oprea, Yufei Liu, Malte Sophian
Hassler, Simon Dubischar, Prabhat Devkota, Yiping Deng, Marco David,
Bogdan Ciurezu, Jonas Bayer and Deepak Aryal

Hilbert Meets Isabelle: Formalisation of the DPRM Theorem in Isabelle
EasyChair Preprint no. 152, May 22, 2018

Dominique Larchey-Wendling and Yannick Forster

Hilbert’s Tenth Problem in Cogq

4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019)

Leibniz International Proceedings in Informatics, No.27, 2019



Restricted proofs of DPRM-theorem

e How weak can be a formal system sufficient for proving DPRM-theorem?

e What formal system are not sufficient for proving DPRM-theorem?



Part II. Improvements



DPRM-theorem

DPRM-theorem improved (Yu. Matiyasevich & Julia Robinson 1975)
Every effectively enumerable set I of n-tuples of natural numbers has a
Diophantine representation of the form

<31,...,an> E9)1<:>3x1...x13{P(al,...,a,,,x1,...,x13):0}

where x1, ..., x13 range over the natural numbers.

DPRM-theorem improved (Yu. Matiyasevich 1975/1982) Every
effectively enumerable set 9 of n-tuples of natural numbers has a
Diophantine representation of the form

<31,...,a,,> EDﬁ<:>E|X1...XQ{P(al,...,an,Xl,...,Xg) :0}

where x1, ..., xg range over the natural numbers.

DPRM-theorem improved (Zhi-Wei Sun 1992/2017) Every effectively
enumerable set I of n-tuples of natural numbers has a Diophantine
representation of the form

<31,...,an> S ,‘Jﬁ<:>E|x1...x11{P(al,...,a,,,x1,...,x11) :0}

where xq,...,x11 range over the integers.



DPR-theorem
DPR-theorem improved (Yu. Matiyasevich 1979) Every effectively
enumerable set M of n-tuples of natural numbers has an exponential
Diophantine representation of the form

(a1,...,ap) €M<=

Ixixoxz{Ei(a1,. .., an, x1,%x0,x3) = Ex(a1,...,an, x1, X2, X3)}

DPR-theorem improved (J. P. Jones & Yu. Matiyasevich 1981) Every
effectively enumerable set 9 of n-tuples of natural numbers has a unary
exponential Diophantine representation of the form

(a1,...,ap) €M <—
3X1X2X3{E]_(31, sy 3,,,X1,X2,X3) = E2(317 ey an7X17X2aX3)}
where Ei(a1,...,an, x1,x2,x3) and Ex(a1,...,an, x1,%2,x3) are expression

constructed by combining the variables and particular natural numbers
using the traditional rules of addition, multiplication and unary
exponentiation 2%,



Single-fold representations

Definition. A purely existential representation

(a1,...,ap) €M<=
E|X1 .. .xm{El(al, ce.ydpy X1y .. ,Xm) = Ez(al, ceeydpy X1y .. ,Xm)}
is single-fold if for every a1, ..., a, the x’s, if they exist, are unique.

DPR-theorem improved (Yu. Matiyasevich 1974) Every effectively
enumerable set O of n-tuples of natural numbers has a single-fold
exponential Diophantine representation of the form

(a1,...,ap) €M <—

E|X1X2X3{E1(31, ceey a,,,Xl,Xz,X3) = Ez(al, ey a,,,Xl,Xz,X3)}

DPR-theorem improved (J. P. Jones & Yu. Matiyasevich 1982)

Every effectively enumerable set I of n-tuples of natural numbers has a

unary single-fold exponential Diophantine representation of the form
(ar,...,an) € M=

Ixixoxs{Ei(ar, ..., an x1,x2,x3) = Ex(a1,...,an,x1,Xx2,x3) }



An Open Problem

Open Problem. Can we construct a single-fold
Diophantine representation for every effectively
enumerable set?

i I

Theorem. For every Theorem. For every
effectively enumerable set effectively enumerable set
we can construct a we can construct a
Diophantine representation. single-fold exponential
Diophantine representation.

I I

DPR-theorem. For every effectively enumerable set we
can construct an exponential Diophantine representation.




Part ITI. Some applications



Equations with Finitely Many Solutions

Suppose that we have an equation
P(a,x1,...,xm) =0,

and somehow we know that for every value of the parameter a the

equation has at most finitely many solutions in natural numbers xq, ...

This fact can be expressed in two ways:

1. The equation (%) has at most v(a) solutions;

2. For every solution of (x) we have

x1 < o(a),...,xm < o(a)

Here v and o should be some suitable functions defined for every a.



Effectivization

Theorem (Axel Thue [1909]). Let F be an integral binary form such
that F(x, 1) has at least three distinct zeros. Let m be a non-zero integer.
Then the equation

F(x,y)=m (%)

has at most finitely many solutions.

Theorem (Alan Baker [1968]). Let F(x, y) be as above. Then one can
effectively find a number B(m) such that () implies that

max{x, y} < B(m).



An impossible effectivization

Let
Ei(a,x1,x2,x3) = Ex(a, x1, X2, X3)

be the equation from a single-fold exponential Diophantine representation
of some undecidable effectively enumerable set. Then
e we can bound the number of solutions for any value of the
parameter a by 1;
e we cannot bound the unique solution of this equation by any total
(i.e., defined for all values of its argument) effectively computable
function of a.

The above equation is non-effectivizable in principle.

Open problem. Is there exist a non-effectivizable genuine Diophantine
equation?

To this end it would be sufficient to establish the existence of finite-fold
Diophantine representations for all effectively enumerable sets



Compression of Diophantine sets

aeEM<— 3Ixy...xm{P(a,x, ...

mn:mm{l,...,n}

II1II

B,=by...b;...b, ba:{lloll

How short such a binary string A, could be?

7Xm):O}

if aeM
otherwise



Diophantine sets admit very high compression

aeM<— Ixi ... xm{P(a,x1,...,%xm) =0}

“" ifaeM
By=bi...bs...b,  by= { 0" erheruice

where
fi is the binary notation of n

gn is the number of “1” in B,

qn is the binary notation of g,

(the binary notations are padded by leading zeros to the length [log,(n + 1)])

The length of A, is 2[log,(n+ 1)]



Computational chaos in Number Theory

Gregory Chaitin constructed a particular one-parameter exponential
Diophantine equation and considered the set of all values of the parameter
for which the equation has infinitely many solutions:

aeM<— Iy ... xm{E1(a,x1, X2, ..., xm) = Ea(a,x1,%2,. .., Xm)}

Theorem (G. Chaitin 1987). Prefix-free Kolmogorov complexity of this
set is equal to n.
—1
My=MN{l,....nt  By=by...by...b, - A, =5 B,
Corollary 1. For every (prefix-free) f the length of A, is at least n — Cs
for some constant Cr.

Corollary 2. For every consistent finitely generated formal system S there
are only finitely many values of a for which we can deduce from S the

validity either of a € 9t or of a ¢ M.

Informally, one can say that the set 90t is completely chaotic.



More computational chaos in Number Theory

Toby Ord and Tien D. Kieu [2003] constructed another particular
one-parameter exponential Diophantine equation which for every value of
the parameter has only finitely many solutions and considered the set of all
values of the parameter for which the equation has even number of
solutions:

aeEM<— " ... xm{E1(a, x1, %0, ..., xm) = E2(a,x1, X2, ..., Xm) }

They proved that the prefix-free Kolmogorov complexity of this set is also
equal to n.



Even more computational chaos in Number Theory

Theorem (Yu. Matiyasevich 2006). Let il be a decidable infinite set
with infinite complement. One can construct an exponential Diophantine
equation which for every value of the parameter has only finitely many
solutions and such that for the set

2EM— Py .. Xm{E1(a,x1, %0, ...y Xm) = Ex(a,x1, X2, ..., Xm)}

the prefix-free Kolmogorov complexity of its initial segment
im,,:imﬂ{a|a§ n}

of this set is equal to n.

Open Problem. Is there similar computational chaos in realm of
Diophantine equations?



Hilbert's 10th Problem

10. Determination of the Solvability of a Diophantine Equation.
Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined by a finite number of operations whether the
equation is solvable in rational integers.

David Hilbert, Mathematical Problems [1900]

DPRM-theorem + Church’s Thesis

Corollary. Hilbert's tenth problem is undecidable



Beyond Church’s Thesis?

Contemporary Physics, 2003, volume 44, number 1, pages 51-71 e Taylor & Francis

Taylor & Francis Group

Computing the non-computable
Tien D. KitEu

We explore in the framework of quantum computation the notion of computability, which
holds a central position in mathematics and theoretical computer science. A quantum
algorithm that exploits the quantum adiabatic processes is considered for Hilbert’s tenth
problem, which is equivalent to the Turing halting problem and known to be mathematically
non-computable. Generalized quantum algorithms are also considered for some other
mathematical non-computables in the same and in different non-computability classes. The
key element of all these algorithms is the measurability of both the values of physical
observables and the quantum-mechanical probability distributions for these values. It is
argued that computability, and thus the limits of mathematics, ought to be determined not
solely by mathematics itself but also by physical principles.



Available online at www.sciencedirect.com

APPLIED
SCIENCE DIRECT® MATHEMATICS
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ELSEVIE Applied Mathematics and Computation 178 (2006) 184-193

www_elsevier.com/locate/amc

Three counterexamples refuting Kieu’s plan
for “quantum adiabatic hypercomputation”;
and some uncomputable quantum mechanical tasks

Warren D. Smith

From Abstract: Tien D. Kieu ... had claimed to have a scheme showing
how, in principle, physical “quantum adiabatic systems” could be used to
solve the prototypical computationally undecidable problem, Turing's
“halting problem”...

There were several errors in those papers, most which ultimately could
be corrected. More seriously, we here exhibit counterexamples to a crucial
step in Kieu's argument... These counterexamples destroy Kieu's entire
plan and there seems no way to correct the plan to escape them.

Nevertheless, there are some important consequences salvageable from
Kieu's idea ...



Available online at www.sciencedirect.com
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ELSEVIER Applied Mathematics and Computation 178 (2006) 184193

Three counterexamples refuting Kieu’s plan
for “quantum adiabatic hypercomputation”;
and some uncomputable quantum mechanical tasks

Warren D. Smith

21 Shore Oaks Drive, Stony Brook, NY 11790, USA

Kieu here made an error about Diophantine equations. He seemed to have the idea that we only need to
worry about Diophantine equations D = 0 with unique solutions, leading to Hp with unique (‘‘nondegener-
ate”) ground states. In fact, it is commonplace for Diophantine equations to have an infinite number of solu-
tions, and indeed the only polynomial Diophantine equations presently known to achieve Turing-
completeness always do have either an infinite number, or no, solutions (it being Turing-undecidable which)

However, this error is repairable. The present author (who was serving as the referee on one of Kieu’s
papers) was able to modify the proof of Jones and Matijasevic [6] concerning “‘singlefold 2-exponential
Diophantine equations”. By so doing I was able to construct Turing-complete 2-exponential Diophantine
functions D which always have a unique global minimum. The value of D at this minimum is a nonnegative
integer and it is Turing-undecidable whether it is zero. (I call these ““singlemin” Diophantines.)

I was then able to show how to modify Kieu’s construction to be based on these instead of on polynomial
Diophantine equations.' So this error was not fatal.

! This comes at the cost of making the physical interpretation less attractive and less realistic-sounding.
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Uncomputability and complexity
of quantum control
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Figure 1. A physical system for simulating Diophantine equations with 7 variables. The system is either n
trapped ions or an n-mode coherent field. The controls D, , ..., D, independently address each subsystem. For
ions, the controls excite transitions between nearest levels, and transfer population of the highest excited state
down to the ground state. For coherent states, the control for the i-th mode is the displacement D. by the
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Uncomputability and complexity
of quantum control

Denys |. Bondar(®! & Alexander N. Pechen(®?3

Discussion
Computability of quantum control problems has been analyzed. A realistic situation, when a number of controls

is finite, has been considered. We have shown that within this setting solving quantum control problems is equiv-
alent to solving Diophantine equations. As a consequence, quantum control is Turing complete. The established
equivalence is a new technique for quantum technology that, e.g., allows to construct quantum problems belong-
ing to a specific complexity class. Examples of a multimode coherent field control are explicitly constructed. The
negative answer to the Hilbert’s tenth problem implies that there is no algorithm deciding whether there is a con-
trol policy connecting two quantum states represented by arbitrary pure or mixed density matrices, i.e., the most
general fixed-time quantum state-to-state control problem is not algorithmically solvable. This result applies to
the problems of finding exact as well approximate solutions for sufficiently small errors. Our method opens up an
opportunity to recast many open mathematical problems, including the Riemann hypothesis, as quantum control
tasks. The uncovered non-algorithmic nature makes quantum control a fruitful research area.



The Riemann Hypothesis (RH) as a Diophantine equation
Theorem (Alan Turing 1939) RH € N3

RH <= Vxi...Xm3yi ... Yn®(X1,. . XmyY1---¥Yn)

Theorem (Georg Kreisel 1958) RH € MY

RH <= V¥xi...xm¥(x1,...Xm)

Corollary of the above + DPRM-theorem. We can construct a
particular polynomial with integer coefficients R(x1,...,Xm) such that

RH <— Vxi...xmR(x1,...,xm)#0
<~ -3y ...xmR(x1,...,xm) =0



A reformulation of the Riemann Hypothesis

Theorem (Yu. Matiyasevich 2018). Consider the following system of
conditions:

2( S n< 254—1) 2m S q < 2m+17
m nz
Bgntl (B(n+1)n —n— 1) +n (2 — 1) (B — 1>
t B™-"(B"—1
<r> =1 (mod 2), rs—u= B(—l)q (mod B”z),

u = rem(rs, B”z_”), p=rem(r,B"+1), mp < ng—150q\/n,
where B denotes 2¢+m+1,
e If the Riemann Hypothesis is true then the above system has no solution
in positive integers {,m,n,p,q,r,s,t, u.
e If the Riemann Hypothesis is false then the above system has infinitely
many such solutions.



Vector addition systems

Introduced by Richard M. Karp and Raymond E. Miller in 1969 as a tool to study
distributed computations

A vector addition system is a set {Vi,..., Vpn} of vectors of the same size
with integer coefficients. One can pass in one step from a vector A to the
vector A+ V) for any k provided that all entries to both A and A+ V. are
natural numbers.

A—>A+Vk1—>A—|—Vk1—|—Vk2—>...

Comparison Problem.
INPUT: Two systems of vector addition {V4,..., Vpn}
and {Wy,..., W,} and a vector A
QUESTION: Is it true that every vector reachable from A in the first
system is also reachable from A in the second system?

Theorem (Michael Rabin 1966, 1972, not published). The
Comparison Problem is undecidable.



Unification of terms

Set of variables X = {x1,x2,...}
Set of symbols of functions F = {f;,f,...,}

Set of terms T = {, ..., fi(x1, a(xi, x2)),. .., A(f(x2, x2),x3),... }

First order unification Problem
INPUT: Two terms T’ and T”
QUESTION: Is there exists a substitution ¢ : X — 7 which makes

T’ and T" identical, T”q5 = T”’(ﬁ?

An example. T' = fi(x1, fa(x1, x2)) T" = f(f(x2, x2), x3)

¢ x1 — hH(x,x)
¢ X2 —> X
¢: x3 — H(hH(x,x),x)

/

T'| = fi(R0x x). hf(xe x).x)) = T’ )



Unification of terms

An algorithm for the first order unification problem was proposed in 1965
by J. Robinson (John Alan Robinson)

Theorem (Warren D. Goldfarb 1981). Second order unification problem
is undecidable

N Tp=f(F(...f(x)...))

—_———
n times
Tomin= Tm Tixn ="
x—Th

There are many other kinds of the inification problem, and the

undecidability of some of them was established by different authors via the
DPRM-theorem



From Diophantine equations to differential equations

P(x1,...,xm) =0

oo
X ‘m
V(r,...,™m) = Z Ut T e T
X14e00sXm=0
9 Xk Xk o) d Xk d Xk
Tkor, te = Xkli (tkaTk) " = Xty
1

0 9 —
P(71571""’7’"07m)W(Tl""’Tm) (1—71)...(1 —7m)

o0 o0
E P(X1y s Xm)Wsg s Ty e Tl = g LT
X100, Xm=0 X1yeeesXm=0
/ _ _ 1
P(x1,... aXm)le,...7xm =1 < Ut = POcts )

Differential equation (**) has a solution if and only if Diophantine
equation (*) has no solutions.

(+)



An application of the undecidability of Hilbert's 10th
problem

Theorem (Jan Denef and Leonard Lipshitz 1984). There is no

algorithm for deciding, for an arbitrary polynomial Q, whether partial
differential equation

o) 2]
Q(7']_,...,7_"1,677_17...,ﬁ>w(7—17...,7'm):0

has a solution in the form of a (formal) power series.



An application of DPRM-theorem

Theorem (Jan Denef and Leonard Lipshitz 1984). We can construct
polynomials with integer coefficients Qi ¢o(x1,...,Xxom), k=1,..., K,
£=1,...,L, such that:

e the system of partial differential equations

L

E: 9 o)
Ql,é(7—17~-77—m7577-17'~787m)WZ(le--aTm) = 0

=1

has a solution in (formal) power series V1 (11,...,Tm), .-, Vi(T1,. ., Tm)
with rational coefficients;
e no such solution is computable.

Proof uses the existence of non-intersecting effectively enumerable
sets which cannot be separated by a decidable set



Diophantine Games
Introduced by James P. Jones in 1974 based on ideas of Michael O.Rabin

P(ai, ..., am, X1,y Xm) =0
Peter selects the values of the parameters a1, ..., am
Ursula selects the values of the unknowns x, ..., xn

> Peter selects a;
» Ursula selects x;
» Peter selects a»
» Ursula selects xo
P
» Peter selects a,
» Ursula selects x,,

Ursula is the winner if and only if the value of the polynomial is to equal to 0.



Powerless winner
Theorem (J. P. Jones 1982) In the game

{{31 +as+1—x)2 {{(a6 + a7)? +3a7 + a6 — 2xa)°

+ ([(x0 = 2) + (x10 — 20)?] [(x0 — 26)* + (320 — 28)* (s — 21)?

+ (x10 — a9 — x1)?)] [(x0 — 3xa)% + (x10 — a8 — a9)?] [(x0 — 3xs — 1)?
+ (x10 — a830)2] — a12 — 1>2 + ([x10 + a12 + a12x034 — 23]

+ [x6 + a13 — X9a4]2>} — X3 — 1}{31 x5 41— a5}{<(X5 — x6)?

+ 3x6 + x5 — 235>2 + <[(a1o —x6)% + (211 — x8)?] [(a10 — x5)?
+ (a11 — x7)%((as — a1)? + (a11 — x8 — 32)2)} [(a10 — 3a5)?2

2
+ (a11 — x7 — Xs)z] [(a10 — 3a5 — 1)? + (a11 — X7Xs)2] — X11 — 1>
+ {[a11 + x11 + x11310%3 — x2]? + [a11 + x12 — 310X3]2>} =0

Ursula has a winning strategy but no computable winning strategy.

Proof is based on the existence of so called simple effectively
enumerable sets



Other applications of DPRM-theorem to games

In 1970 Alistair H. Lachlan introduced another kind of game as a possible
tool to establish results about the lattice of effectively enumerable sets.
He conjectured that for these games it can be decided which of the two
players has the winning strategy. He obtained partial results in this
direction but in 2006 Martin Kummer proved many results about
undecidability of Lachlan’s games using DPRM-theorem.



An undecidable problem of Harvey M. Friedman

Let P be the class of all polynomials with integer coefficients (in an
arbitrary number of variables of arbitrary high degrees).

If P € P and V is a set of numbers, then P(V) will denote the set of all
values assumed by polynomial P when its variables take (independently) all
values from V.

W=

)}

$= {”eZ+ : APep(n = max(P(Z)) & P([-3,3]) C (- In(n)%, In(n)
Here [—3, 3] is the set of all real numbers between —3 and 3.

Teorem (H. M. Friedman 2004). The set § is undecidable.

6 = {n€Z+ . 3Pep(n = max(P(Z)) & P([~32,3]) C (—In(n)3, |n(n)%))}

Teorem (H. M. Friedman 2004). The set & is decidable.



Part IV. Some open problems



Non-Deterministic Diophantine Machine (NDDM)

Introduced by Leonard Adleman and Kenneth Manders in 1976

NDDM
input _ guess
ﬁ’ P(ai,...,an, X1y, Xm) =0 ‘m
YES NO
accept (a1, ...,an) reject

DPRM-theorem: NDDMs are as powerful as, say, Turing machines, i.e.,
every set acceptable by a Turing machine is accepted by some NDDM,
and, of course, vice versa.

Open problem. Are NDDMs as efficient as Turing machines?



Complexity measures

Turing machine Diophantine machines
e TIME e SIZE
e SPACE

SIZE can be defined as the least possible value of

max{|xi|, ..., |[xml|},
or (non-equivalently) as
Pal+ -+ [xml,
or (non-equivalently) as
X1 4+ X

where |x]| is the binary length of x (|x| & logy(x), x ~ 2/x)



Class D

Introduced by Leonard Adleman and Kenneth Manders in 1975

Class D consists of all sets 9t having representations of the form

(a1, ...,ap) €M <= Ixy...xm{P(a1,...,an, x1,...,Xm) =0&

al+ -+ Ixml < Q(lar] + -+ lanl)}

where P and Q are polynomials and |x| denotes the binary length of x.

Nota bene: it is not required that

(ar,...,an) €M <= Ixy...xm{P(a1,...,an,X1,...,Xm) =0}



Open problem DLNP

(a1, ...,an) €EM <= Ixy ... xm{P(a1,...,an,x1,...,Xm) =0&
al+ -+ Ixml < Q(lar] + -+ +[an])}
Conjecture (L. Adleman & K. Manders 1975). D=NP

Theorem (Bernard R. Hodgson & Clement F. Kent 1983, Stasis
Yukna 1982). Class NP can be defined as the class of sets having Davis
bounded normal form

(a1,...,ap) €M Eix{|x] < A(lar]|+ -+ |an|) &
Wy < B(al +-+ lan)) =
321 ... Zm {ké'zll 2] < Ce(lar] + -+ + |an]) &
R(a1,---,an, X, Y, 21,1 Zm) :0}}}

where A, B, Cy, ..., Cy, and R are polynomials.

Millenium problem (Clay Mathematical Institute, 2000). PINP



D vs NP
Trivial fact. D C NP.

Theorem (K. Manders & L. Adleman 1978). Class D contains
NP-complete problems.

Theorem (K. Manders & L. Adleman 1975).

{(a,b,c) :a=b} €D



Conditions sufficient for D=NP

Prototypical theorem. If certain set 9t belongs to D, then D=NP

Examples 1 (K. Manders & L. Adleman 1975).

K
M = {m:m:kallk, mkG{O,l}}

k=0

Examples 2 (J. P. Jones & Yu. Matiyasevich 1984).

K K
m = {(m, ny:m= ka2k, n= an2k, my < nk}
k=0 k=0



Conditions sufficient for D=NP

Prototypical theorem. If certain set 9t belongs to D, then D=NP

Examples 3 (Ramarathanam Venkatesan & Sivaramakrishnan
Rajagopalan, 1992).

M = {(a, b) : for every odd prime factor p of b
the residue of a mod p is even}

Theorem (Ramarathanam Venkatesan & Sivaramakrishnan
Rajagopalan, 1992). /f D=NP then Randomized Diophantine Problem
is average-case complete.



