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The two theorems

DPR-theorem (Martin Davis, Hilary Putnam, Julia Robinson [1961]).
Every e�ectively enumerable set M of n-tuples of natural numbers has an

exponential Diophantine representation of the form

〈a1, . . . , an〉 ∈M⇐⇒∃x1 . . . xm
{E1(a1, . . . , an, x1, . . . , xm) = E2(a1, . . . , an, x1, . . . , xm)}

where E1(a1, . . . , an, x1, . . . , xm) and E2(a1, . . . , an, x1, . . . , xm) are

expression constructed by combining the variables and particular natural

numbers using the traditional rules of addition, multiplication and

exponentiation.

An improvement of DPR-theorem (DPRM-theorem [1970]). Every

e�ectively enumerable set M of n-tuples of natural numbers has a

Diophantine representation

〈a1, . . . , an〉 ∈M⇐⇒∃x1 . . . xm{P(a1, . . . , an, x1, . . . , xm) = 0}

where P(a1, . . . , an, x1, . . . , xm) is a polynomial with integer coe�cients.



Plan of the talk

I Proofs

I Improvements

I Some applications

I Some Open Problems



Part I. Proofs



Original proof of DPRM-theorem

DPRM-theorem. Every e�ectively enumerable set M has a Diophantine

representation

Step 1. Construct of an arithmetical formula with many bounded
universal quanti�ers (after Kurt G�odel)

Step 2. Transform this formula into Davis normal form with single
bounded universal quanti�er

Step 3. Eliminate the single bounded universal quanti�er through
the use of exponential Diophantine equation

Step 4. Transform the exponential Diophantine equation into an
equivalent Diophantine equation

"1" + "2" + "3" = DPR-theorem

DPR + "4" = DPRM-theorem



An alternative version of the original proof of
DPRM-theorem

DPRM-theorem. Every e�ectively enumerable set M has a Diophantine

representation

Step 1. Construct of an arithmetical formula with many bounded
universal quanti�ers (after Kurt G�odel)

Step 2. REPEAT:

Step 3. Eliminate the innermost bounded universal quanti�er

through the use of exponential Diophantine equation

Step 4. Transform the exponential Diophantine equation into an

equivalent Diophantine equation



Step 3. Elimination of bounded universal quanti�er

1959 Martin Davis and Hilary Putnam: conditional technique under the
assumption of the existence of arbitrary long non-constant
arithmetical progressions consisting entirely of prime numbers (the
existence proved by Ben Green and Terence Tao in 2004)

1960 Julia Robinson: unconditional technique using arbitrarily long
arithmetical progressions with large prime factors

1972 Yuri Matiyasevich: instead of prime numbers one can use
multiplicative version of Dirichlet principle

1993 Yuri Matiyasevich: a completely di�erent technique (the bounded
universal quanti�er is replaced by summation)



Step 1. Arithmetization

DPR-theorem. Every e�ectively enumerable set M has an exponential

Diophantine representation

Step 1. Construct of an arithmetical formula with many bounded
universal quanti�ers (after Kurt G�odel)

Step 2. Transform this formula into Davis normal form with single
bounded universal quanti�er

Step 3. Eliminate the single bounded universal quanti�er through
the use of exponential Diophantine equation

"1" + "2" + "3" = DPR-theorem



Step 1. Purely existential arithmetization

DPR-theorem. Every e�ectively enumerable set M has an exponential

Diophantine representation

Step 1. Construct of an arithmetical formula presenting given
e�ectively enumerable set without using universal
quanti�ers

"1" = DPR-theorem

Purely existential arithmetization was done for:

• Turing machines (Yu.Matiyasevich 1976, 1993)

• register machines (J. P. Jones and Yu.Matiyasevich 1983)

• partial recursive functions (Yu.Matiyasevich 1994)

• universal technique of existential arithmetization
(Yu.Matiyasevich 2009)



Step 4. Elimination of exponentiation

Original technique:

1952 Julia Robinson: a su�cient condition for the possibility to perform
such transformation

1970 Yuri Matiyasevich: the ful�llment of this condition by the sequence of
Fibonacci numbers

Modern technique: usage of the second order recurrent sequence of
solutions of Pell equation

A slight modi�cations: some third and fourth order recurrent sequences
could be used (Maxim Vsemirnov 1995, 1997)



Computer veri�cation of DPRM-theorem
Karol Pa�k
The Matiyasevich Theorem. Preliminaries

Formalized Mathematics, 25(4):315�322, 2017.
Diophantine sets. Preliminaries

Formalized Mathematics, 26(1):81�90, 2018.

Benedikt Stock, Abhik Pal, Maria Antonia Oprea, Yufei Liu, Malte Sophian
Hassler, Simon Dubischar, Prabhat Devkota, Yiping Deng, Marco David,
Bogdan Ciurezu, Jonas Bayer and Deepak Aryal
Hilbert Meets Isabelle: Formalisation of the DPRM Theorem in Isabelle

EasyChair Preprint no. 152, May 22, 2018

Dominique Larchey-Wendling and Yannick Forster
Hilbert's Tenth Problem in Coq

4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019)
Leibniz International Proceedings in Informatics, No.27, 2019



Restricted proofs of DPRM-theorem

• How weak can be a formal system su�cient for proving DPRM-theorem?

• What formal system are not su�cient for proving DPRM-theorem?



Part II. Improvements



DPRM-theorem

DPRM-theorem improved (Yu.Matiyasevich & Julia Robinson 1975)
Every e�ectively enumerable set M of n-tuples of natural numbers has a

Diophantine representation of the form

〈a1, . . . , an〉 ∈M⇐⇒∃x1 . . . x13{P(a1, . . . , an, x1, . . . , x13) = 0}

where x1, . . . , x13 range over the natural numbers.

DPRM-theorem improved (Yu.Matiyasevich 1975/1982) Every
e�ectively enumerable set M of n-tuples of natural numbers has a

Diophantine representation of the form

〈a1, . . . , an〉 ∈M⇐⇒∃x1 . . . x9{P(a1, . . . , an, x1, . . . , x9) = 0}

where x1, . . . , x9 range over the natural numbers.

DPRM-theorem improved (Zhi-Wei Sun 1992/2017) Every e�ectively

enumerable set M of n-tuples of natural numbers has a Diophantine

representation of the form

〈a1, . . . , an〉 ∈M⇐⇒∃x1 . . . x11{P(a1, . . . , an, x1, . . . , x11) = 0}

where x1, . . . , x11 range over the integers.



DPR-theorem
DPR-theorem improved (Yu.Matiyasevich 1979) Every e�ectively

enumerable set M of n-tuples of natural numbers has an exponential

Diophantine representation of the form

〈a1, . . . , an〉 ∈M⇐⇒
∃x1x2x3{E1(a1, . . . , an, x1, x2, x3) = E2(a1, . . . , an, x1, x2, x3)}

DPR-theorem improved (J. P. Jones & Yu.Matiyasevich 1981) Every
e�ectively enumerable set M of n-tuples of natural numbers has a unary

exponential Diophantine representation of the form

〈a1, . . . , an〉 ∈M⇐⇒
∃x1x2x3{E1(a1, . . . , an, x1, x2, x3) = E2(a1, . . . , an, x1, x2, x3)}

where E1(a1, . . . , an, x1, x2, x3) and E2(a1, . . . , an, x1, x2, x3) are expression

constructed by combining the variables and particular natural numbers

using the traditional rules of addition, multiplication and unary

exponentiation 2x .



Single-fold representations

De�nition. A purely existential representation

〈a1, . . . , an〉 ∈M⇐⇒
∃x1 . . . xm{E1(a1, . . . , an, x1, . . . , xm) = E2(a1, . . . , an, x1, . . . , xm)}

is single-fold if for every a1, . . . , an the x 's, if they exist, are unique.

DPR-theorem improved (Yu.Matiyasevich 1974) Every e�ectively

enumerable set M of n-tuples of natural numbers has a single-fold

exponential Diophantine representation of the form

〈a1, . . . , an〉 ∈M⇐⇒
∃x1x2x3{E1(a1, . . . , an, x1, x2, x3) = E2(a1, . . . , an, x1, x2, x3)}

DPR-theorem improved (J. P. Jones & Yu.Matiyasevich 1982)
Every e�ectively enumerable set M of n-tuples of natural numbers has a

unary single-fold exponential Diophantine representation of the form

〈a1, . . . , an〉 ∈M⇐⇒
∃x1x2x3{E1(a1, . . . , an, x1, x2, x3) = E2(a1, . . . , an, x1, x2, x3)}



An Open Problem

Open Problem. Can we construct a single-fold

Diophantine representation for every e�ectively

enumerable set?

AA�� AA��

Theorem. For every
e�ectively enumerable set

we can construct a

Diophantine representation.

Theorem. For every
e�ectively enumerable set

we can construct a

single-fold exponential

Diophantine representation.

AA��AA��

DPR-theorem. For every e�ectively enumerable set we

can construct an exponential Diophantine representation.



Part III. Some applications



Equations with Finitely Many Solutions

Suppose that we have an equation

P(a, x1, . . . , xm) = 0, (∗)

and somehow we know that for every value of the parameter a the
equation has at most �nitely many solutions in natural numbers x1, . . . , xm.

This fact can be expressed in two ways:

1. The equation (∗) has at most ν(a) solutions;

2. For every solution of (∗) we have

x1 < σ(a), . . . , xm < σ(a)

Here ν and σ should be some suitable functions de�ned for every a.



E�ectivization

Theorem (Axel Thue [1909]). Let F be an integral binary form such

that F(x, 1) has at least three distinct zeros. Let m be a non-zero integer.

Then the equation

F (x , y) = m (∗)

has at most �nitely many solutions.

Theorem (Alan Baker [1968]). Let F(x, y) be as above. Then one can

e�ectively �nd a number B(m) such that (∗) implies that

max{x , y} < B(m).



An impossible e�ectivization

Let

E1(a, x1, x2, x3) = E2(a, x1, x2, x3)

be the equation from a single-fold exponential Diophantine representation
of some undecidable e�ectively enumerable set. Then

• we can bound the number of solutions for any value of the
parameter a by 1;
• we cannot bound the unique solution of this equation by any total
(i.e., de�ned for all values of its argument) e�ectively computable
function of a.

The above equation is non-e�ectivizable in principle.

Open problem. Is there exist a non-e�ectivizable genuine Diophantine

equation?

To this end it would be su�cient to establish the existence of �nite-fold
Diophantine representations for all e�ectively enumerable sets



Compression of Diophantine sets

a ∈M⇐⇒ ∃x1 . . . xm{P(a, x1, . . . , xm) = 0}

Mn = M ∩ {1, . . . , n}

Bn = b1 . . . ba . . . bn ba =

{
"1", if a ∈M
"0" otherwise

Bn
f−→ An

f −1

−→ Bn

How short such a binary string An could be?



Diophantine sets admit very high compression

a ∈M⇐⇒ ∃x1 . . . xm{P(a, x1, . . . , xm) = 0}

Bn = b1 . . . ba . . . bn ba =

{
�1�, if a ∈M
�0� otherwise

Bn
f−→ An

f −1

−→ Bn

An = ñq̃n

where
ñ is the binary notation of n

qn is the number of �1� in Bn

q̃n is the binary notation of qn

(the binary notations are padded by leading zeros to the length dlog2(n + 1)e)

The length of An is 2dlog2(n + 1)e



Computational chaos in Number Theory

Gregory Chaitin constructed a particular one-parameter exponential
Diophantine equation and considered the set of all values of the parameter
for which the equation has in�nitely many solutions:

a ∈M⇐⇒ ∃∞x1 . . . xm{E1(a, x1, x2, . . . , xm) = E2(a, x1, x2, . . . , xm)}

Theorem (G. Chaitin 1987). Pre�x-free Kolmogorov complexity of this
set is equal to n.

Mn = M ∩ {1, . . . , n} Bn = b1 . . . ba . . . bn
f−→ An

f −1

−→ Bn

Corollary 1. For every (pre�x-free) f the length of An is at least n − Cf

for some constant Cf .

Corollary 2. For every consistent �nitely generated formal system S there

are only �nitely many values of a for which we can deduce from S the

validity either of a ∈M or of a /∈M.

Informally, one can say that the set M is completely chaotic.



More computational chaos in Number Theory

Toby Ord and Tien D.Kieu [2003] constructed another particular
one-parameter exponential Diophantine equation which for every value of
the parameter has only �nitely many solutions and considered the set of all
values of the parameter for which the equation has even number of
solutions:

a ∈M⇐⇒ ∃evenx1 . . . xm{E1(a, x1, x2, . . . , xm) = E2(a, x1, x2, . . . , xm)}

They proved that the pre�x-free Kolmogorov complexity of this set is also
equal to n.



Even more computational chaos in Number Theory

Theorem (Yu.Matiyasevich 2006). Let U be a decidable in�nite set

with in�nite complement. One can construct an exponential Diophantine

equation which for every value of the parameter has only �nitely many

solutions and such that for the set

a ∈M⇐⇒ ∃Ux1 . . . xm{E1(a, x1, x2, . . . , xm) = E2(a, x1, x2, . . . , xm)}

the pre�x-free Kolmogorov complexity of its initial segment

Mn = M
⋂
{a | a ≤ n}

of this set is equal to n.

Open Problem. Is there similar computational chaos in realm of

Diophantine equations?



Hilbert's 10th Problem

10. Determination of the Solvability of a Diophantine Equation.
Given a Diophantine equation with any number of unknown quantities and
with rational integral numerical coe�cients: To devise a process according

to which it can be determined by a �nite number of operations whether the

equation is solvable in rational integers.
David Hilbert, Mathematical Problems [1900]

DPRM-theorem + Church's Thesis

Corollary. Hilbert's tenth problem is undecidable



Beyond Church's Thesis?



From Abstract: Tien D. Kieu ... had claimed to have a scheme showing
how, in principle, physical �quantum adiabatic systems� could be used to
solve the prototypical computationally undecidable problem, Turing's
�halting problem�...

There were several errors in those papers, most which ultimately could
be corrected. More seriously, we here exhibit counterexamples to a crucial
step in Kieu's argument... These counterexamples destroy Kieu's entire
plan and there seems no way to correct the plan to escape them.

Nevertheless, there are some important consequences salvageable from
Kieu's idea ...









The Riemann Hypothesis (RH) as a Diophantine equation

Theorem (Alan Turing 1939) RH ∈ Π0

2

RH ⇐⇒ ∀x1 . . . xm∃y1 . . . ynφ(x1, . . . xm, y1 . . . yn)

Theorem (Georg Kreisel 1958) RH ∈ Π0

1

RH ⇐⇒ ∀x1 . . . xmψ(x1, . . . xm)

Corollary of the above + DPRM-theorem. We can construct a

particular polynomial with integer coe�cients R(x1, . . . , xm) such that

RH ⇐⇒ ∀x1 . . . xmR(x1, . . . , xm) 6= 0

⇐⇒ ¬∃x1 . . . xmR(x1, . . . , xm) = 0



A reformulation of the Riemann Hypothesis

Theorem (Yu.Matiyasevich 2018). Consider the following system of

conditions:

2` ≤ n < 2`+1, 2m ≤ q < 2m+1,

s =
Bn+1

(
B(n+1)n − n − 1

)
+ n

(Bn+1 − 1)2
, t =

(2m − 1)
(
Bn2 − 1

)
Bn − 1

,

(
t

r

)
≡ 1 (mod 2), rs − u ≡ Bn2−n (Bn − 1)

B − 1
q (mod Bn2),

u = rem
(
rs,Bn2−n), p = rem(r ,Bn + 1), mp < nq − 15`2q

√
n,

where B denotes 2`+m+1.

• If the Riemann Hypothesis is true then the above system has no solution

in positive integers `,m, n, p, q, r , s, t, u.
• If the Riemann Hypothesis is false then the above system has in�nitely

many such solutions.



Vector addition systems
Introduced by Richard M. Karp and Raymond E. Miller in 1969 as a tool to study

distributed computations

A vector addition system is a set {V1, . . . ,Vm} of vectors of the same size
with integer coe�cients. One can pass in one step from a vector A to the
vector A + Vk for any k provided that all entries to both A and A + Vk are

natural numbers.

A −→ A + Vk1 −→ A + Vk1 + Vk2 −→ . . .

Comparison Problem.
INPUT: Two systems of vector addition {V1, . . . ,Vm}

and {W1, . . . ,Wn} and a vector A
QUESTION: Is it true that every vector reachable from A in the �rst

system is also reachable from A in the second system?

Theorem (Michael Rabin 1966, 1972, not published). The
Comparison Problem is undecidable.



Uni�cation of terms

Set of variables X = {x1, x2, . . . }
Set of symbols of functions F = {f1, f2, . . . , }
Set of terms T = {, . . . , f1(x1, f2(x1, x2)), . . . , f1(f2(x2, x2), x3), . . . }

First order uni�cation Problem
INPUT: Two terms T ′ and T ′′

QUESTION: Is there exists a substitution φ : X −→ T which makes

T ′ and T ′′ identical, T ′
∣∣∣
φ
≡ T ′′

∣∣∣
φ
?

An example. T ′ = f1(x1, f2(x1, x2)) T ′′ = f1(f2(x2, x2), x3)

φ : x1 7−→ f2(x2, x2)

φ : x2 7−→ x2

φ : x3 7−→ f2(f2(x2, x2), x2)

T
′
∣∣∣
φ
≡ f1(f2(x2, x2), f2(f2(x2, x2), x2)) ≡ T

′′
∣∣∣
φ



Uni�cation of terms

An algorithm for the �rst order uni�cation problem was proposed in 1965
by J. Robinson (John Alan Robinson)

Theorem (Warren D. Goldfarb 1981). Second order uni�cation problem

is undecidable

n ! Tn = f (f (. . . f︸ ︷︷ ︸
n times

(x) . . . ))

Tm+n ≡ Tm

∣∣∣
x−→Tn

Tm×n ≡ ?

There are many other kinds of the ini�cation problem, and the
undecidability of some of them was established by di�erent authors via the
DPRM-theorem



From Diophantine equations to di�erential equations

P(x1, . . . , xm) = 0 (∗)

Ψ(τ1, . . . , τm) =
∞∑

x1,...,xm=0

ψx1,...,xmτ
x1
1
. . . τ xmm

τk
∂
∂τk

txkk = xkt
xk
k

(
tk

∂
∂tk

)d
txkk = xdk t

xk
k

P
(
τ1

∂
∂τ1
, . . . , τm

∂
∂τm

)
Ψ(τ1, . . . , τm) =

1

(1− τ1) . . . (1− τm)
(∗∗)

∞∑
x1,...,xm=0

P(x1, . . . , xm)ψx1,...,xmτ
x1
1
. . . τ xmm =

∞∑
x1,...,xm=0

τ x1
1
. . . τ xmm

P(x1, . . . , xm)ψx1,...,xm = 1 ⇔ ψx1,...,xm = 1

P(x1,...,xm)

Di�erential equation (**) has a solution if and only if Diophantine
equation (*) has no solutions.



An application of the undecidability of Hilbert's 10th
problem

Theorem (Jan Denef and Leonard Lipshitz 1984). There is no
algorithm for deciding, for an arbitrary polynomial Q, whether partial

di�erential equation

Q
(
τ1, . . . , τm,

∂
∂τ1
, . . . , ∂

∂τm

)
Ψ(τ1, . . . , τm) = 0

has a solution in the form of a (formal) power series.



An application of DPRM-theorem

Theorem (Jan Denef and Leonard Lipshitz 1984). We can construct

polynomials with integer coe�cients Qk,`(x1, . . . , x2m), k = 1, . . . ,K ,

` = 1, . . . , L, such that:
• the system of partial di�erential equations

L∑
`=1

Q1,`

(
τ1, . . . , τm,

∂
∂τ1
, . . . , ∂

∂τm

)
Ψ`(τ1, . . . , τm) = 0

..............................................................................
L∑
`=1

QK ,`

(
τ1, . . . , τm,

∂
∂τ1
, . . . , ∂

∂τm

)
Ψ`(τ1, . . . , τm) = 0

has a solution in (formal) power series Ψ1(τ1, . . . , τm), . . . ,ΨL(τ1, . . . , τm)
with rational coe�cients;

• no such solution is computable.

Proof uses the existence of non-intersecting e�ectively enumerable
sets which cannot be separated by a decidable set



Diophantine Games
Introduced by James P. Jones in 1974 based on ideas of Michael O. Rabin

P(a1, . . . , am, x1, . . . , xm) = 0

Peter selects the values of the parameters a1, . . . , am
Ursula selects the values of the unknowns x1, . . . , xm
I Peter selects a1
I Ursula selects x1
I Peter selects a2
I Ursula selects x2
I ..........................

I Peter selects am
I Ursula selects xm

Ursula is the winner if and only if the value of the polynomial is to equal to 0.



Powerless winner
Theorem (J. P. Jones 1982) In the game{

{a1 + a6 + 1− x4}2 ·
{〈

(a6 + a7)
2 + 3a7 + a6 − 2x4

〉
2

+
〈[

(x9 − a7)
2 + (x10 − a9)

2
][
(x9 − a6)

2 + (x10 − a8)
2((x4 − a1)

2

+ (x10 − a9 − x1)
2)
][
(x9 − 3x4)

2 + (x10 − a8 − a9)
2
][
(x9 − 3x4 − 1)2

+ (x10 − a8a9)
2
]
− a12 − 1

〉
2

+
〈
[x10 + a12 + a12x9a4 − a3]

2

+ [x5 + a13 − x9a4]
2
〉}
− x13 − 1

}
{a1 + x5 + 1− a5}

{〈
(x5 − x6)

2

+ 3x6 + x5 − 2a5
〉
2
+
〈[

(a10 − x6)
2 + (a11 − x8)

2
][
(a10 − x5)

2

+ (a11 − x7)
2((a5 − a1)

2 + (a11 − x8 − a2)
2)
][
(a10 − 3a5)

2

+ (a11 − x7 − x8)
2
][
(a10 − 3a5 − 1)2 + (a11 − x7x8)

2
]
− x11 − 1

〉
2

+
〈
[a11 + x11 + x11a10x3 − x2]

2 + [a11 + x12 − a10x3]
2
〉}

= 0

Ursula has a winning strategy but no computable winning strategy.

Proof is based on the existence of so called simple e�ectively
enumerable sets



Other applications of DPRM-theorem to games

In 1970 Alistair H. Lachlan introduced another kind of game as a possible
tool to establish results about the lattice of e�ectively enumerable sets.
He conjectured that for these games it can be decided which of the two
players has the winning strategy. He obtained partial results in this
direction but in 2006 Martin Kummer proved many results about
undecidability of Lachlan's games using DPRM-theorem.



An undecidable problem of Harvey M. Friedman

Let P be the class of all polynomials with integer coe�cients (in an
arbitrary number of variables of arbitrary high degrees).

If P ∈ P and V is a set of numbers, then P(V ) will denote the set of all
values assumed by polynomial P when its variables take (independently) all
values from V .

F =
{
n∈Z+ : ∃P∈P

(
n = max(P(Z)) &P([−3, 3]) ⊆ (− ln(n)

1

3 , ln(n)
1

3 )
)}

Here [−3, 3] is the set of all real numbers between −3 and 3.

Teorem (H.M. Friedman 2004). The set F is undecidable.

G =
{
n∈Z+ : ∃P∈P

(
n = max(P(Z)) &P([−3

2
, 3
2

]) ⊆ (− ln(n)
1

3 , ln(n)
1

3 )
)}

Teorem (H.M. Friedman 2004). The set G is decidable.



Part IV. Some open problems



Non-Deterministic Diophantine Machine (NDDM)
Introduced by Leonard Adleman and Kenneth Manders in 1976

NDDM

P(a1, . . . , an, x1, . . . , xm)
?
= 0 �-

? --

input
a1, . . . , an

guess
x1, . . . , xm

YES NO

accept 〈a1, . . . , an〉 reject

DPRM-theorem: NDDMs are as powerful as, say, Turing machines, i.e.,

every set acceptable by a Turing machine is accepted by some NDDM,

and, of course, vice versa.

Open problem. Are NDDMs as e�cient as Turing machines?



Complexity measures
Turing machine Diophantine machines
• TIME • SIZE
• SPACE

SIZE can be de�ned as the least possible value of

max{|x1|, . . . , |xm|},

or (non-equivalently) as
|x1|+ · · ·+ |xm|,

or (non-equivalently) as
|x1 + · · ·+ xm|

where |x | is the binary length of x (|x | ≈ log2(x), x ≈ 2|x |)



Class D
Introduced by Leonard Adleman and Kenneth Manders in 1975

Class D consists of all sets M having representations of the form

〈a1, . . . , an〉 ∈M ⇐⇒ ∃x1 . . . xm {P(a1, . . . , an, x1, . . . , xm) = 0&

|x1|+ · · ·+ |xm| ≤ Q(|a1|+ · · ·+ |an|)}

where P and Q are polynomials and |x | denotes the binary length of x .

Nota bene: it is not required that

〈a1, . . . , an〉 ∈M ⇐⇒ ∃x1 . . . xm {P(a1, . . . , an, x1, . . . , xm) = 0}



Open problem D
?
=NP

〈a1, . . . , an〉 ∈M ⇐⇒ ∃x1 . . . xm {P(a1, . . . , an, x1, . . . , xm) = 0&

|x1|+ · · ·+ |xm| ≤ Q(|a1|+ · · ·+ |an|)}

Conjecture (L. Adleman & K.Manders 1975). D=NP

Theorem (Bernard R. Hodgson & Clement F. Kent 1983, Stasis
Yukna 1982). Class NP can be de�ned as the class of sets having Davis

bounded normal form

〈a1, . . . , an〉 ∈M ⇐⇒ ∃x
{
|x | ≤ A(|a1|+ · · ·+ |an|) &

∀y
{
y ≤ B(|a1|+ · · ·+ |an|)⇒

∃z1 . . . zm
{

m
&
k=1

|zk | ≤ Ck(|a1|+ · · ·+ |an|) &

R(a1, . . . , an, x , y , z1, . . . , zm) = 0

}}}
where A, B , C1, . . . , Cm, and R are polynomials.

Millenium problem (Clay Mathematical Institute, 2000). P
?
=NP



D vs NP

Trivial fact. D ⊆ NP.

Theorem (K.Manders & L. Adleman 1978). Class D contains

NP-complete problems.

Theorem (K.Manders & L. Adleman 1975).

{〈a, b, c〉 : a = bc} ∈ D



Conditions su�cient for D=NP

Prototypical theorem. If certain set M belongs to D, then D=NP

Examples 1 (K.Manders & L. Adleman 1975).

M =

{
m : m =

K∑
k=0

mk4
k , mk ∈ {0, 1}

}

Examples 2 (J. P. Jones & Yu.Matiyasevich 1984).

M =

{
〈m, n〉 : m =

K∑
k=0

mk2
k , n =

K∑
k=0

nk2
k , mk ≤ nk

}



Conditions su�cient for D=NP

Prototypical theorem. If certain set M belongs to D, then D=NP

Examples 3 (Ramarathanam Venkatesan & Sivaramakrishnan
Rajagopalan, 1992).

M =
{
〈a, b〉 : for every odd prime factor p of b

the residue of a mod p is even
}

Theorem (Ramarathanam Venkatesan & Sivaramakrishnan
Rajagopalan, 1992). If D=NP then Randomized Diophantine Problem

is average-case complete.


