Torsors and Topology in Diophantine Problems MSRI DDC Semester

David Corwin

October 28, 2020

Motivation: Rational and Integral Points on Varieties

Let X be a variety over a number field k. E.g., $k = 0$.

Question

Is $X(k)$ empty? finite? infinite? If finite, what is the set of rational points?

This is hard, and there's no known algorithm. But here are some computable questions:

- Is $X(\mathbb{Q}_p)$ empty?
- Is $X(\mathbb{R})$ empty?
- Is $X(\overline{\mathbb{Q}})$ empty?

One can similarly ask about $X(\mathbb{Z})$ (which is also hard), and then ask about $X(\mathbb{Z}_p)$ and $X(\overline{\mathbb{Z}})$ (which are computable).

Simplifying the Problem

Approaches to $X(k)$

Suppose $k = \mathbb{Q}$. One might consider the following approaches:

• Find $X(\mathbb{O}) \subset X(\mathbb{O}_n)$. Maybe using some p-adic methods, even p-adic analysis. • Find $X(\mathbb{O}) \subset X(\overline{\mathbb{O}})$. Then $X(\mathbb{Q})$ is precisely the subset of $X(\overline{\mathbb{Q}})$ fixed by the absolute Galois group.

For a field k , let $G_k = \mathsf{Gal}(\overline{k}/k)$. Then we have $X(k) = X(\overline{k})^{G_k}$.

For a number field k and a valuation v, we consider its completions k_v (e.g., \mathbb{Q}_p and \mathbb{R} for $k = \mathbb{Q}$).

Note that $G_{k_v} \subseteq G_k$, so we might try to combine the approaches.

 QQ

Relating Rational Points to Galois Theory

Question

How do we effectively use Galois groups to study rational points?

Answer: torsors (AKA principal homogeneous spaces) and Galois cohomology

Definition

A group over k is a group π with an action $G_k \to$ Aut π

Examples

- $\bullet \pi$ is any group with trivial action of G_k . This is called *constant*.
- $\pi=\mu_{\textsf{n}}\coloneqq\{\textsf{x}\in\overline{\textsf{k}}\,\mid\,\textsf{x}^{\textsf{n}}=1\}$. (This is constant iff k contains all \textsf{nth} roots of unity.)
- \bullet For a fixed elliptic curve E over k , $\pi = E[n] := \{ P \in E(\overline{k}) \mid nP = O \}.$

Definition

A torsor under π over k is a set T with an action of G_k and an action of π such that:

- The action of π on T is simply transitive (i.e., choosing an element of T gives a bijection between π and T)
- The map $\pi \times T \to T$ is equivariant for the action of G_k , i.e., if $\sigma \in G_k$, $a \in \pi$, and $b \in \mathcal{T}$, then

$$
\sigma(a(b))=\sigma(a)(\sigma(b))
$$

Torsors are classified by group cohomology. The set of torsors under π over k up to isomorphism is $H^1(G_k;\pi).$

This means that sets of torsors have a lot of nice formal properties and can be computed in many cases.

Examples

- If π is any group over k, we can set $T = \pi$ with the same G_k -action, and let π act by translation. This is called the *trivial* torsor.
- For $z \in k^{\times}$, then $T_z = z^{1/n} := \{x \in \overline{k} \mid x^n = z\}$ is a torsor under μ_n .
- For $z\in E(k)$, then $\mathcal{T}_z = [\mathcal{n}]^{-1}(z) \mathrel{\mathop:}= \{ x\in E(\overline{k}) \, \mid \, \mathcal{n} x = z \}$ is a torsor under $E[n]$.

Note that a torsor is trivial iff T has an element fixed by G_k .

We will now see how the latter two examples come naturally from finite coverings of algebraic curve.

First let's consider nth roots:

- Let $X=\mathbb{G}_m={\mathbb A}^1\setminus\{0\}.$ Then topologically, $X(\mathbb{C})$ is a punctured plane, so its fundamental group is $\mathbb Z$.
- \bullet For an integer *n*, there is a topological cover of degree *n* corresponding to the subgroup $n\mathbb{Z} \subseteq \pi_1(X(\mathbb{C}))$. Algebraically, this cover is given by the map $x \mapsto z = x^n$.
- The group μ_n is naturally the group of automorphisms of the topological cover. A root of unity ζ_n sends x to $x\zeta_n$.
- The torsor T_z is the fiber (preimage) of $z \in X(k)$ by the covering map.
- Next, let's consider the elliptic curve example:

- For an elliptic curve E, we have $\pi_1(E(\mathbb{C})) = \mathbb{Z} \times \mathbb{Z}$.
- The multiplication-by-n map $[n]$ on E (using its group law) expresses E as the topological cover of itself corresponding to the index n^2 subgroup $n\mathbb{Z} \times n\mathbb{Z} \subseteq \pi_1(E(\mathbb{C}))$.
- As an example, for the elliptic curve $y^2 = x^3 + x$, the map [2] is given explicitly by

$$
[2](x,y) = \left(\frac{(x^2-1)^2}{4(x^3+x)}, \frac{y(x^6+5x^4-5x^2-1)}{8(x^3+2)^2}\right)
$$

• The torsor T_z is similarly the fiber of $[n]$ over the point $z \in E(k)$.

- There is an analogy between Galois groups and fundamental groups.
- \bullet In this analogy, a field k is really a space Spec k whose fundamental group is G_k .
- Monodromy action: if $f: V \rightarrow S$ is a covering or bundle over S, then $\pi_1(S)$ acts on the fibers of f.
- Similarly, $\pi_1(S)$ acts on the various algebro-topological invariants of the fibers.
- A group π or a torsor T is called "over k" precisely because it has a "monodromy" action of G_k
- The theory of schemes and the étale topology can be used to make this analogy more precise and rigorous.

 QQQ

Torsors Under the Fundamental Group

- **•** If X is any smooth variety over k (a subfield of \mathbb{C}), a theorem of Riemann says that any finite topological cover of $X(\mathbb{C})$ can be expressed as a map $Y\stackrel{f}{\to} X$ of algebraic varieties over $k.$
- If this is a Galois cover of degree d (i.e., its automorphism group has size d), then its automorphism group π is a quotient of $\pi_1(X(\mathbb{C}))$.
- For $z\in X(k)$, the set $f^{-1}(z)$ has d points, but some of them might have irrational (but algebraic) coordinates.
- Given $\sigma \in \mathit{G}_k$ and $x \in f^{-1}(z)$, we can apply σ to the coordinates of x to get another element of $f^{-1}(z)$.
- $f^{-1}(z)$ also has a simply transitive action of $\pi,$ so it's a torsor under π over k .
- The torsor is trivial iff $f^{-1}(z)$ has a point fixed by G_{k} ; i.e., a rational point.

The Kummer Map

- \bullet By considering all finite covers, one can associate to any $z \in X(k)$ a torsor over k under $\pi_1(X(\mathbb{C}))$ (the profinite completion of the fundamental group).
- The set of such torsors is $H^1(G_k;\widehat{\pi_1(X(\mathbb{C}))})$ (you can take that as a notation, but it's actually the same as group cohomology!)
- This torsor is denoted $\kappa(z)$. In fact, for any reasonable variety X, we have a map

$$
X(k) \stackrel{\kappa}{\to} H^1(G_k; \widehat{\pi_1(X(\mathbb{C}))})
$$

- **It is called the Kummer map, after Kummer studied field extensions** defined by radicals using what we now call the map $\,k^\times \to H^1(\, \mathsf{G}_k; \mu_{\mathsf{n}});$ i.e., the case of $X = \mathbb{G}_{\mathsf{m}}$
- More generally, you could consider that map only for a single cover (as we did on the last slide), or even a certain collection of covers thus for a (Galois-equivariant) quotient of $\pi_1(X(\mathbb{C}))$ $\pi_1(X(\mathbb{C}))$ $\pi_1(X(\mathbb{C}))$.

We have a similar map

$$
X(k_v) \xrightarrow{\kappa_v} H^1(G_{k_v}; \widehat{\pi_1(X(\mathbb{C}))})
$$

for every v. We can thus create a diagram:

$$
X(k) \longrightarrow X(k_v)
$$

\n
$$
\kappa \downarrow \qquad \qquad k_v
$$

\n
$$
H^1(G_k; \pi_1(\widehat{X(\mathbb{C})})) \xrightarrow{\text{loc}} H^1(G_{k_v}; \pi_1(\widehat{X(\mathbb{C})}))
$$

- One often approaches $X(k)$ by studying $\kappa^{-1}_\rho(\mathsf{Im}(\mathsf{loc}))$. It is a subset of $X(k_v)$ that contains $X(k)$.
- All of my work has involved variants on this diagram.

Obstructions to the Local-Global Principle

In this variant, we use not one place/prime/valuation v , but rather all v , bundled together in the adele ring \mathbb{A}_k :

- $X(\mathbb{A}_k)^{\mathrm{f-cov}}:=\kappa_{\mathsf{a}}^{-1}(\mathsf{Im}(\mathsf{loc}))$ is the *finite descent obstruction* set
- Manin defined $X({\mathbb A}_k)^{\mathrm{Br}}$, another subset of $X({\mathbb A}_k)$ containing $X({\mathbb Q})$.
- Originally defined using Brauer groups; Harpaz-Schlank gave it a much more topological interpretation:
- As $X({\mathbb A}_k)^{\mathsf{f-cov}}$ is defined using $\widehat{\pi_1(X({\mathbb{C}}))}$, the set $X({\mathbb A}_k)^{\mathrm{Br}}$ uses $H^*(X(\mathbb{C});\widehat{\mathbb{Z}}).$
- One can combine them into the étale homotopy obstruction $X(\mathbb{A}_k)^h.$

Brauer and Etale Homotopy Obstructions to Rational Points on Open Covers

The obstructions on the previous slide are often used to answer whether $X(k)$ is empty (i.e., if $X(\mathbb{A}_k)^h$ is empty, then so is $X(k)!$) In arXiv:2006.11699, we (joint $w/$ Schlank) prove:

- **1** If k is a totally real field, and $X(k) = \emptyset$, there is a Zariski open covering $\{U_i\}$ of X such that $U_i(\mathbb{A}_k)^{\mathrm{f-cov}} = \emptyset$.
- **2** If the section conjecture in anabelian geometry holds, then the same is true for any number field k .
- $\bullet\,$ Using the homotopical nature of $X(\mathbb{A}_k)^h$, we show:

Theorem

If $f: X \to S$ is a fibration of varieties (e.g., smooth proper map), $\mathcal{S}(\mathbb{A}_k)^h=\emptyset$, and for every $s\in\mathcal{S}(k)$, we have $X_{\mathcal{s}}(\mathbb{A}_k)^h=\emptyset$, then under some technical conditions $X(\mathbb{A}_k)^h = \emptyset.$

画

 Ω

イロト イ押ト イヨト イヨト

Brauer and Etale Homotopy Obstruction: Future **Directions**

- Seems like an algorithm: if $X(k)$ is empty, just show $\,{ U_i({\mathbb A}_k)}^{\rm f-cov} = \emptyset \,$ for all i.
- If U_i were proper (compact), then this would be computable (with a finite set of finite covers).
- **•** Generally: might need infinitely many covers
- \bullet Hope: could choose U_i so that only finitely many covers are needed
- Works in specific examples, and there's an intuition that one needs infinitely many only when there are "rational points on the cusp" (does not happen if $X(k) = \emptyset$).
- Future project: étale homotopy obstruction for $k = \mathbb{Q}_p(t)$. For reasons of Galois cohomological dimension, $\pi_3(X(\mathbb{C}))$ is relevant, unlike for k a number field.

Non-Abelian Chabauty's Method

- Uses a diagram with only one place (prime) v, but only certain topological covers.
- More specifically, only covers whose automorphism group is a nilpotent group. This corresponds to a quotient of $\pi_1(X(\bar{\mathbb{C}}))$ denoted $\pi_1^{\mu n}(X)$, giving the following diagram:

$$
\begin{array}{ccc}X(\mathbb{Q}) & \longrightarrow & X(\mathbb{Q}_p)\\ \uparrow & & \downarrow \kappa_p\\ H^1(G_{\mathbb{Q}};\pi_1^{un}(X)) & \xrightarrow{\text{loc}} & H^1(G_{\mathbb{Q}_p};\pi_1^{un}(X))\end{array}
$$

- $H^1(G_{\mathbb{Q}_p}; \pi_1^\text{\it{un}}(X))$ is related via p -adic Hodge theory to p -adic analytic functions.
- One gets analytic functions on $X(\mathbb{Q}_p)$ whose common zero set contains $X(\mathbb{Q})$.

 QQQ

- Much has been computed by Balakrishnan et al
- My work: explicit computations for $X = \mathbb{A}^1 \setminus \{0,1\} = \mathbb{P}^1 \setminus \{0,1,\infty\}$ (building on work of Dan-Cohen and Wewers).
- We find $X(\mathbb{Z}[1/N])$ in place of $X(\mathbb{Q})$ (using $X(\mathbb{Z}_p)$ in place of $X(\mathbb{Q}_p)$.
- Equivalent to "S-unit equation": find x, y such that:
	- $x + y = 1$
	- 2 the numerator and denominator of x and y contain only primes dividing N
- We have some new ideas and computations in arXiv:1812.05707 and an algorithm in arXiv:1811.07364 (joint w/ Dan-Cohen)
- Working on expanding our methods to integral points on elliptic curves, with a view toward all higher genus curves.

Relevant Links:

- <https://arxiv.org/abs/2006.11699> on Brauer and Etale Homotopy Obstructions
- <https://arxiv.org/abs/1812.05707> and <https://arxiv.org/abs/1811.07364> on non-Abelian Chabauty for a punctured line
- <math.berkeley.edu/~dcorwin> for other versions of and slides about those papers
- <math.berkeley.edu/~dcorwin/files/etale.pdf> for an introduction to the relationship between Galois groups and fundamental groups