Two Effective Concept Classes of PACi Incomparable Degrees

Gihanee Senadheera

[gihanee.s@siu.edu](mailto:authoremail@siu.edu)

Department of Mathematics Southern Illinois University, Carbondale

October 29, 2020

 Ω

- ▶ PAC stands for Probably Approximately Correct
- \blacktriangleright It is a Machine learning model.
- \blacktriangleright It was introduced by Leslie Valiant in 1984

 299

イロト イ御 トイミトイ

1. Let X be a set, called the *instance space*.

 298

K ロ ⊁ K 個 ▶ K ミ ▶ K

- 1. Let X be a set, called the *instance space*.
- 2. Let C be a subset of $P(X)$ the power set of X, called a *concept class*.

 Ω

- 1. Let X be a set, called the *instance space*.
- 2. Let C be a subset of $P(X)$ the power set of X, called a *concept class*.
- 3. The elements of C are called concepts.

 Ω

We say that C is PAC Learnable if and only if there is an algorithm L such that for every $c \in C$, every $\epsilon, \delta \in (0, \frac{1}{2})$ and every probability distribution D on X , the algorithm L behaves as follows:

 Ω

We say that C is PAC Learnable if and only if there is an algorithm L such that for every $c \in C$, every $\epsilon, \delta \in (0, \frac{1}{2})$ and every probability distribution D on X , the algorithm L behaves as follows:

On input (ϵ, δ) , the algorithm L will ask for some number *n* of examples, and will be given $\{(x_1, i_1), ..., (x_n, i_n)\}$ where x_k are independently randomly drawn from D and $i_k = \chi_c(x_k)$.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

We say that C is PAC Learnable if and only if there is an algorithm L such that for every $c \in C$, every $\epsilon, \delta \in (0, \frac{1}{2})$ and every probability distribution D on X , the algorithm L behaves as follows:

On input (ϵ, δ) , the algorithm L will ask for some number *n* of examples, and will be given $\{(x_1, i_1), ..., (x_n, i_n)\}\)$ where x_k are independently randomly drawn from D and $i_k = \chi_c(x_k)$.

The algorithm will then output some $h \in C$ so that with probability at least $1 - \delta$ in D, the symmetric difference of h and c has the probability at most ϵ in D.

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Suppose X is the real line.

 \blacktriangleright Let C be the set of positive half lines then C is PAC learnable.

 299

イロト イ御 トイミトイ

Suppose X is the real line.

- \blacktriangleright Let C be the set of positive half lines then C is PAC learnable.
- \blacktriangleright Let C be the set of negative half lines then C is PAC learnable.
- \blacktriangleright Let C be the set of intervals then C is PAC learnable.

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right. \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right. \right. \right. \end{array}$

Suppose X is \mathbb{R}^2 .

 \blacktriangleright Let C be the set of axis aligned rectangles then C is PAC learnable.

 299

イロト イ御 トイミトイ

Suppose X is \mathbb{R}^2 .

- \blacktriangleright Let C be the set of axis aligned rectangles then C is PAC learnable.
- In Let C be the set of convex d-gons then C is PAC learnable for any d.

K ロ ⊁ K 個 ▶ K ミ ▶ K

 Ω

Suppose $X = \mathbb{R}^d$. Let C be the set of linear-half spaces. Then C is PAC learnable.

Ξ

 299

K ロ ト K 倒 ト K 差 ト K

A binary tree could explain an interval. For example consider the unit interval.

 299

イロト イ御 トイ ヨ トイ ヨ

A binary tree could explain an interval. For example consider the unit interval.

An interval can be seen as a set of paths through a Π^0_1 tree.

 QQ

イロト イ御 トイ ヨ トイ ヨ

A relation is Π^0_1 if it is expressed in the form \forall $y,$ $R(x,y)$ where $R(x,y)$ is computable. The Π^0_1 relations are the co-c.e (complement is c.e) relations. Then Π^0_1 is the set consisting of elements of the form $\{x : \forall y \ R(x, y)\}.$

 Ω

メロトメ 倒 トメ ミトメ ミト

A relation is Π^0_1 if it is expressed in the form \forall $y,$ $R(x,y)$ where $R(x,y)$ is computable. The Π^0_1 relations are the co-c.e (complement is c.e) relations. Then Π^0_1 is the set consisting of elements of the form $\{x : \forall y \ R(x, y)\}.$

A Π $_1^0$ tree $\; T_{e,n}\;$ is a relation where predecessor relation is a Π_1^0 relation.

 Ω

メロトメ 倒 トメ ミトメ ミト

A weakly effective concept class is a computable enumeration $\varphi_e : \mathbb{N} \to \mathbb{N}$ such that $\varphi_e(n)$ is a Π^0_1 index for a Π^0_1 tree $\mathcal{T}_{e,n}.$

Gihanee Senadheera **[Two Effective Concept Classes of PACi Incomparable Degrees](#page-0-0) Concept 29, 2020 10 / 32**

 Ω

An effective concept class is a weakly effective concept class $\varphi_e(n)$ such that for each n, the set c_n of paths through $T_{e,n}$ is computable in the sense that there is a computable function $f_{\mathsf{c}_n}(d,r):2^{<\omega}\times\mathbb{Q}\rightarrow\{0,1\}$ such that

$$
f_{c_n}(\sigma, r) = \begin{cases} 1 & \text{if } B_r(\sigma) \cap c_n \neq \varnothing \\ 0 & \text{if } B_{2r}(\sigma) \cap c_n = \varnothing \\ 0 \text{ or } 1 & \text{otherwise} \end{cases}
$$

where $B_r(\sigma)$ is the set of all paths that either extend σ or first differ from it at the $-\lceil \lg(r) \rceil$ place or later.

We can say that an effective concept class is a set of Π^0_1 classes. A Π^0_1 class is expressed as the set of infinite paths through a computable tree or the set of infinite paths through a Π^0_1 tree.

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

The class C of linear half-spaces in \mathbb{R}^d bounded by hyper-planes with computable coefficients is an effective concept class.

 QQ

イロト イ御 トイ ヨ トイ ヨ

The class C of linear half-spaces in \mathbb{R}^d bounded by hyper-planes with computable coefficients is an effective concept class.

Since the distance of a point from the boundary can be computed, the linear half-spaces with computable coefficients is a computable set.

Consider \mathbb{R}^2 . There are algorithms to compute the distance from a point to a line. The line has computable coefficients. Here no need to use the full precision reals.

 Ω

The class C of convex d-gons in \mathbb{R}^2 with computable vertices is an effective concept class.

 299

イロト イ御 トイ ヨ トイ ヨ

Let C be an effective concept class over the instance space X and C' an effective concept class over the instance space $X^{\prime}.$

We say that C PACi reduces to C' , which we denote by $C \leq_{PACi} C'$ exactly when there are functions $g:X\to X'$ and $h:\mathcal{C}\to\mathcal{C}'$ such that

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right. \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right. \right. \right. \end{array}$

Let C be an effective concept class over the instance space X and C' an effective concept class over the instance space $X^{\prime}.$

We say that C PACi reduces to C' , which we denote by $C \leq_{PACi} C'$ exactly when there are functions $g:X\to X'$ and $h:\mathcal C\to\mathcal C'$ such that

1. g is a Turing functional

 Ω

Let C be an effective concept class over the instance space X and C' an effective concept class over the instance space $X^{\prime}.$

We say that C PACi reduces to C' , which we denote by $C \leq_{PACi} C'$ exactly when there are functions $g:X\to X'$ and $h:\mathcal C\to\mathcal C'$ such that

- 1. g is a Turing functional
- 2. h is a computable function on indices

 Ω

Let C be an effective concept class over the instance space X and C' an effective concept class over the instance space $X^{\prime}.$

We say that C PACi reduces to C' , which we denote by $C \leq_{PACi} C'$ exactly when there are functions $g:X\to X'$ and $h:\mathcal C\to\mathcal C'$ such that

- 1. g is a Turing functional
- 2. h is a computable function on indices
- 3. for all $x \in X$ and for all $c \in C$, we have $x \in c$ if and only if $g(x) \in h(c)$.

 Ω

Let C be an effective concept class over the instance space X and C' an effective concept class over the instance space $X^{\prime}.$

We say that C PACi reduces to C' , which we denote by $C \leq_{PACi} C'$ exactly when there are functions $g:X\to X'$ and $h:\mathcal C\to\mathcal C'$ such that

- 1. g is a Turing functional
- 2. h is a computable function on indices
- 3. for all $x \in X$ and for all $c \in C$, we have $x \in c$ if and only if $g(x) \in h(c)$.

The "i" indicates the independence of this definition from size and computation time.

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Let C and C' be concept classes. Then if C PACi-reduces to C' , and C' is PACi learnable, C is PACi learnable.

メロトメ 倒下 メミトメ

 299

Let C and C' be concept classes. Then if C PACi-reduces to C' , and C' is PACi learnable, C is PACi learnable.

Proof: Let L' be the learning algorithm for C' . We use L' to learn C .

 Ω

Let C and C' be concept classes. Then if C PACi-reduces to C' , and C' is PACi learnable, C is PACi learnable.

Proof:

Let L' be the learning algorithm for C' .

We use L' to learn C .

For a random example (x, c) of the unknown target concept $c \in C$, we can compute the labeled example $(g(x), h(c))$ and give it to L'.

 Ω

 $A \Box B$ A B B A B B A

Let C and C' be concept classes. Then if C PACi-reduces to C' , and C' is PACi learnable, C is PACi learnable.

Proof:

Let L' be the learning algorithm for C' .

We use L' to learn C .

For a random example (x, c) of the unknown target concept $c \in C$, we can compute the labeled example $(g(x), h(c))$ and give it to L'. If the instance $x \in X$ are drawn according D, then the instances $g(x)\in X'$ are drawn according to some induced distribution $D'.$

 Ω

Although we do not know the target concept c, our definition of reduction guarantees that the computed examples $(g(x), h(c))$ are consistent with some $c' \in C'$, and thus L' will output a hypothesis t' that has error at most ϵ with respect to $D'.$

 Ω

Although we do not know the target concept c, our definition of reduction guarantees that the computed examples $(g(x), h(c))$ are consistent with some $c' \in C'$, and thus L' will output a hypothesis t' that has error at most ϵ with respect to $D'.$

Our hypothesis for c becomes $t(x) = t'(g(x))$, which has at most ϵ error with respect to D.

 Ω

PAC Reducibility (Pit, Warmuth '90, Vazirani,Kearns '94

Definition

Let C be an effective concept class over the instance space X and C' an effective concept class over the instance space X' .

We say that C PAC reduces to C' , denoted $C \leq_{PAC} C'$ exactly when $C \leq_{PACi} C'$ via functions g and h such that

 Ω

PAC Reducibility (Pit, Warmuth '90, Vazirani, Kearns '94

Definition

Let C be an effective concept class over the instance space X and C' an effective concept class over the instance space X' .

We say that C PAC reduces to C' , denoted $C \leq_{PAC} C'$ exactly when $C \leq_{PACi} C'$ via functions g and h such that 1. ε is computable in polynomial time,

 Ω

Let C be an effective concept class over the instance space X and C' an effective concept class over the instance space X' .

We say that C PAC reduces to C' , denoted $C \leq_{PAC} C'$ exactly when $C \leq_{PACi} C'$ via functions g and h such that

- 1. g is computable in polynomial time,
- 2. There is a polynomial p such that for any $x \in X$ of size n, the element $g(x)$ is of size at most $p(n)$, and

 Ω

Let C be an effective concept class over the instance space X and C' an effective concept class over the instance space X' .

We say that C PAC reduces to C' , denoted $C \leq_{PAC} C'$ exactly when $C \leq_{PACi} C'$ via functions g and h such that

- 1. g is computable in polynomial time,
- 2. There is a polynomial p such that for any $x \in X$ of size n, the element $g(x)$ is of size at most $p(n)$, and
- 3. There is a polynomial q such that for every $c \in C$ of size n, the concept $h(c)$ is of size at most $q(n)$.

 Ω

 \triangleright Observe that empty concept class on the empty instance space is reducible to any other concept class.

 299

イロト イ御 トイ ヨ トイ ヨ

- \triangleright Observe that empty concept class on the empty instance space is reducible to any other concept class.
- \triangleright Also any concept class is reducible to itself through the identity function.

メロトメ 倒 トメ ミトメ 毛

 QQ

- \triangleright Observe that empty concept class on the empty instance space is reducible to any other concept class.
- \triangleright Also any concept class is reducible to itself through the identity function.
- \triangleright We can infer that there are \leq_{PAC} incomparable concept classes since there are continuum many concept classes on a countably infinite instance spaces.

 \leftarrow \leftarrow

 Ω

- \triangleright Observe that empty concept class on the empty instance space is reducible to any other concept class.
- \triangleright Also any concept class is reducible to itself through the identity function.
- \triangleright We can infer that there are \leq_{PAC} incomparable concept classes since there are continuum many concept classes on a countably infinite instance spaces.
- \triangleright This degree structure is analogous to Turing degrees and their structures. So, we can expect the effective concept classes to behave in similar manner to computably enumerable degrees.

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

We say $\mathsf{C}\sim\mathsf{C}'$ if $\mathsf{C}\leq_{\mathsf{PAC}_i}\mathsf{C}'$ and $\mathsf{C}'\leq_{\mathsf{PAC}_i}\mathsf{C}$, the relation \sim is an equivalence class. The PACi degree of concept class C is $deg(C) = \{C' : C' \sim C\}$

メロトメ 倒 トメ ミトメ ミト

 299

Let X be the empty instance space and X' be any instance space.

Let C the empty concept class over X and C' be any concept class over X^{\prime} .

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right. \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right. \right. \right. \end{array}$

 299

Let X be the empty instance space and X' be any instance space.

Let C the empty concept class over X and C' be any concept class over X^{\prime} .

Define $g: X \to X'$ Turing functional and $h: C \to C'$ a computable functional on indices.

 Ω

Let X be the empty instance space and X' be any instance space.

Let C the empty concept class over X and C' be any concept class over X^{\prime} .

Define $g: X \to X'$ Turing functional and $h: C \to C'$ a computable functional on indices.

Then for all $x \in X$ and for all $c \in C$ we have $x \in c$ iff $g(x) \in h(c)$. We can write $C \leq_{PACi} C'$.

 Ω

イロト イ何 ト イヨ ト イヨ

Example

Let $X = X' = \mathbb{R}$ be the two instance spaces.

Let C be the set of positive half lines and C' be the set of negative half lines.

メロトメ 倒 トメ ミトメ 毛

 299

Let $X = X' = \mathbb{R}$ be the two instance spaces.

Let C be the set of positive half lines and C' be the set of negative half lines.

The positive half lines are bounded below. If positive half lines are bounded below by computable lower bound then the concept class C is an effective concept class.

 Ω

Let $X = X' = \mathbb{R}$ be the two instance spaces.

Let C be the set of positive half lines and C' be the set of negative half lines.

The positive half lines are bounded below. If positive half lines are bounded below by computable lower bound then the concept class C is an effective concept class.

Similarly we can show that C' is also an effective concept class.

 Ω

Let $X = X' = \mathbb{R}$ be the two instance spaces.

Let C be the set of positive half lines and C' be the set of negative half lines.

The positive half lines are bounded below. If positive half lines are bounded below by computable lower bound then the concept class C is an effective concept class.

Similarly we can show that C' is also an effective concept class.

Define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = -x$ and $h : C \to C'$ by $h((a,\infty)) = (-\infty,-a).$

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Let $X = X' = \mathbb{R}$ be the two instance spaces.

Let C be the set of positive half lines and C' be the set of negative half lines.

The positive half lines are bounded below. If positive half lines are bounded below by computable lower bound then the concept class C is an effective concept class.

Similarly we can show that C' is also an effective concept class.

Define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = -x$ and $h : C \to C'$ by $h((a,\infty)) = (-\infty,-a).$

Now we can show that for all $x \in \mathbb{R}$ and for all positive half lines $c = (a, \infty)$ in C we have $x \in c$ iff $g(x) \in h(c)$ where $h(c)$ is a negative half line.

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Let $X = X' = \mathbb{R}$ be the two instance spaces.

Let C be the set of positive half lines and C' be the set of negative half lines.

The positive half lines are bounded below. If positive half lines are bounded below by computable lower bound then the concept class C is an effective concept class.

Similarly we can show that C' is also an effective concept class.

Define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = -x$ and $h : C \to C'$ by $h((a,\infty)) = (-\infty,-a).$

Now we can show that for all $x \in \mathbb{R}$ and for all positive half lines $c = (a, \infty)$ in C we have $x \in c$ iff $g(x) \in h(c)$ where $h(c)$ is a negative half line.

This will give us $C \leq_{PACi} C'$. With appropriate functionals we can show that $C' \leq_{PACi} C$. Thus $C \sim C'.$

 Ω

イロト イ部 トイミト イミト

There exist computably enumerable (c.e.) sets A and B such that $A \nleq_T B$ and $B \nleq_T A$.

メロトメ 倒 トメ ミトメ 毛

 299

There exist computably enumerable (c.e.) sets A and B such that $A \nleq_T B$ and $B \nleq_T A$.

Idea of the Proof:

It suffice to recursively enumerate A and B to meet for all e the requirements:

$$
R_{2e}: A \neq \{e\}^B
$$

$$
R_{2e+1}: B \neq \{e\}^A
$$

 Ω

$$
\{e\}_{s}^{B_s}(x)\downarrow=0.
$$

 299

メロトメ 倒 トメ 差 トメ 差

$$
\{e\}_{s}^{B_s}(x)\downarrow=0.
$$

If no such stage exists we do nothing and R_{2e} is automatically satisfied by the witness x because $A(x)=0$ and either $\{e\}^B(x)\uparrow$ or $\{e\}^B(x) \downarrow \neq 0.$

 Ω

イロト イ何 ト イヨ ト イヨ

$$
\{e\}_{s}^{B_s}(x)\downarrow=0.
$$

If no such stage exists we do nothing and R_{2e} is automatically satisfied by the witness x because $A(x)=0$ and either $\{e\}^B(x)\uparrow$ or $\{e\}^B(x) \downarrow \neq 0.$ If $s + 1$ exists, we say R_{2e} requires attention at stage $s + 1$. Now R_{2e} receives attention and we: (1) enumerate x in A_{s+1} ;

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

$$
\{e\}_{s}^{B_s}(x)\downarrow=0.
$$

If no such stage exists we do nothing and R_{2e} is automatically satisfied by the witness x because $A(x)=0$ and either $\{e\}^B(x)\uparrow$ or $\{e\}^B(x) \downarrow \neq 0.$ If $s + 1$ exists, we say R_{2e} requires attention at stage $s + 1$. Now R_{2e} receives attention and we: (1) enumerate x in A_{s+1} ; (2) define the restraint function $r(2e, s + 1)$ and attempt (with priority R_{2e}) to restrain any number $y \le r = r(2e, s + 1)$ from later entering B. If we achieve the latter objective then

$$
\{e\}^B(x)=0.
$$

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

$$
\{e\}_{s}^{B_s}(x)\downarrow=0.
$$

If no such stage exists we do nothing and R_{2e} is automatically satisfied by the witness x because $A(x)=0$ and either $\{e\}^B(x)\uparrow$ or $\{e\}^B(x) \downarrow \neq 0.$ If $s + 1$ exists, we say R_{2e} requires attention at stage $s + 1$. Now R_{2e} receives attention and we: (1) enumerate x in A_{s+1} ; (2) define the restraint function $r(2e, s + 1)$ and attempt (with priority R_{2e}) to restrain any number $y \le r = r(2e, s + 1)$ from later entering B. If we achieve the latter objective then

$$
\{e\}^B(x)=0.
$$

However, $A(x) = 1$ so requirement R_{2e} is satisfied. (The strategy for R_{2e+1} is the same but with the roles of A and B reversed.)

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

There exists an effective concept class C over the instance space $X = 2^{\omega}$ and an effective concept class C' over the instance space $X'=2^\omega$ such that C does not PACi reduce to C' and also C' does not PACi reduce to C (i.e. $C \nleq_{PACi} C'$ and $C' \nleq_{PACi} C$).

 Ω

 $A \Box B$ A B B A B B A

The two concept classes C and C' are constructed over the instance spaces X and X' respectively. Let $\{h_t|t\in\mathbb{N}\}$ enumerate the set of all computable functions from $\mathbb{N} \to \mathbb{N}$.

Requirements : R_{2t} : there exists $c \in C$ such that $h_t(c) \notin C'$ R_{2t+1} : there exists $c' \in C'$ such that $h_t(c') \notin C$

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Consider R_{2t} .

To satisfy the requirement R_{2t} we will attach a potential witness c: a concept, to R_{2t} which is not yet enumerated in C.

We choose c such that c is an index for a tree.

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right. \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right. \right. \right. \end{array}$

At stage s pick a c such that $c \notin B_s$ and $c \notin \mathcal{C}_s$ and $h_t(c) \notin \mathcal{C}'_s$. Let B_s be the set of all trees that can not be enumerated in C_s . We will enumerate c in \mathcal{C}_s and enumerate $h_t(c)$ in A_s . Let A_s be the set of all trees that can not be enumerated in C' . Thus we restrain the tree $h_t(c)$ later entering to C' . This is achieved by checking the condition, $c' \notin A_{s+1}$.

 Ω

Since $C_s \nleq_{PACi} C'_s$ we have $C \nleq_{PACi} C'.$

The strategy for R_{2t+1} is the same but with roles of C_s and C'_s reversed.

We call the sets A and B as restraint sets.

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right. \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right. \right. \right. \end{array}$

Let $X = X' = 2^{\omega}$.

Let $\{c_n\}_{n=1}^{\infty}$ be a family of trees, where c_n has n number of 1's and followed by zeros. In this sequence each of these trees c_n , consists of a single infinite path.

 Ω

Let $X = X' = 2^{\omega}$.

Let $\{c_n\}_{n=1}^{\infty}$ be a family of trees, where c_n has n number of 1's and followed by zeros. In this sequence each of these trees c_n , consists of a single infinite path.

Stage $s = 0$: Let $C_0 = C'_0 = \phi$ and $A_0 = B_0 = \phi$.

Stage $s + 1$:

Requirement R_{2t} requires attention if, we have not enumerated a witness, $c \in C$ for the requirement R_{2t} .

Requirement R_{2t+1} requires attention if, we have not enumerated a witness, $c' \in C'$ for the requirement R_{2t+1} .

 Ω

イロト イ御 トイ ヨ トイ ヨ)

Construction of the two concept classes, C and C' . Cont.

Chose least $i \leq s$ such that R_i requires attention.

Suppose $i = 2t$. Now R_{2t} receives attention. Pick a tree c from the family $\{c_n\}$ defined above such that $c \notin C_{\rm s}$ and $c \notin B_{\rm s}$ and $h_t(c) \notin C_{\rm s}'$. Enumerate $c \in C_{s+1}$ and $h_t(c)$ in A_{s+1} .

 Ω

Chose least $i \leq s$ such that R_i requires attention.

Suppose $i = 2t$. Now R_{2t} receives attention. Pick a tree c from the family $\{c_n\}$ defined above such that $c \notin C_{\rm s}$ and $c \notin B_{\rm s}$ and $h_t(c) \notin C_{\rm s}'$. Enumerate $c \in C_{s+1}$ and $h_t(c)$ in A_{s+1} .

Suppose $i = 2t + 1$. Now R_{2t+1} receives attention. Pick a tree c' from the family $\{c_n\}$ such that $c' \notin C'_s$ and $c' \notin A_s$ and $h_t(c') \notin C_s$. Then enumerate $c' \in C'_{s+1}$ and $h_t(c')$ in B_{s+1} .

At each stage we will be checking through finite amount of trees in $\mathcal{C}_{\mathbf{s}}$, C'_s , A_s or B_s .

When a requirement is satisfied at stage s it will remain satisfied forever.

 Ω

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

To show there exists two effective concept classes of PAC incomparable degree

 299

メロメメ 倒す メミメメ毛

Thank you!

 299

メロメメ 倒 トメ ミメメ ミメ