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Part |: Ranks



Goldfeld's conjecture

Definition
Given an elliptic curve

E:y>=x34+ax+b

defined over Q, and given a nonzero integer d, the quadratic twist
E9 is defined to be the curve

E9:y? = x3 + d?ax + d°b.

Conjecture (Goldfeld 1979)

Given any elliptic curve E/Q,
» 50% of the quadratic twists of E have rank zero,
> 50% of the quadratic twists of E have rank one, and
» 0% have any higher rank.



The minimalist conjecture

Goldfeld's conjecture is sometimes called the minimalist conjecture.
It predicts that rank is as small “as possible” for 100% of twists.

Question
Why should a positive percentage of twists have positive rank?

Given E/Q, one fundamental invariant of E is its global root
number w(E) € £1.
» If w(E) = +1, L(s, E) has even order of vanishing at s = 1.
> If w(E) =—1, L(s, E) has odd order of vanishing at s = 1.

Conjecture (Birch and Swinnerton-Dyer)
The order of vanishing of L(s, E) at s = 1 equals the rank of E.



The minimalist conjecture

For fixed E, half the quadratic twists E9 of E have W(Ed) = +1,
and the remainder have w(E?) = —1.
Conjecture (Goldfeld 1979 revisited)
Given any elliptic curve E/Q,
> 100% of the twists with w(E9) = +1 have rank zero,
> 100% of the twists with w(E9) = —1 have rank one, and
» 0% have any higher rank.



The main result for ranks

Conjecture (Goldfeld 1979 revisited)

Given any elliptic curve E/Q,
> 100% of the twists with w(E9) = 41 have rank zero,
> 100% of the twists with w(E9) = —1 have rank one, and
» 0% have any higher rank.

Theorem (S.)

Given an elliptic curve E/Q whose 4-torsion obeys some technical
conditions,

» 100% of the twists with w(E9) = +1 have rank zero,

» 100% of the twists with w(EY) = —1 have rank at most one,
and

» 0% have any higher rank.



Example: Congruent numbers

Definition
A positive integer d is called a congruent number if it is the area
of a right triangle with rational side lengths.



Example: Congruent numbers

337
41 60 35
6 3 12
2 Area 7
Area 5
24
20 5
3 Fibonacci, ~1200.
5 106921
3 9690 780
Area 6 323
Area 13
4
323
Anon., ~1000 CE 30

L. Pisanus, ~1770.



Example: Congruent number

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016430830

Area 157

6803298487826435051217540
411340519227716149383203

Don Zagier, 1984.

411340519227716149383203
21666555693714761309610



Example: non-congruent numbers

Area 1

?

Theorem (Fermat, 1600s)

1 s not a congruent number.



Example: Congruent numbers

A positive integer d is a congruent number if and only if the
elliptic curve
Eg,\, cy?=x3 — d%x

has positive rank over Q.
Proposition
Given a positive integer d,

> w(EZdy) = +1ifd equals 1,2, or 3 mod 8, and

> w(EZy) = —1ifd equals 5,6, or 7 mod 8.
Our theorem shows that 0% of d equal to 1,2, or 3 mod 8 are

congruent numbers.
It doesn't say anything about d equal to 5,6 or 7 mod 8.



Bounds for 0%

Given € > 0 and N > 0, the number of congruent numbers d < N
that equal 1, 2, or 3 mod 8 is predicted to be at most

N3/4+6.

In 2017, we bounded this number by

N
(log log log log log N)1/3°

Our current best proven bound is

N
exp ((log log log H)1/2)"




Part |l:

Selmer Groups



Defining Selmer groups

Definition

Fix a number field F, and take Gr = Gal(F/F). Given a place v of
F, take G, to be the absolute Galois group of the completion of F
at v.

Choose a finite Ge-module M. For each place v of F, choose a
subgroup £, of H(G,, M). We assume L, is the set of unramified
classes at all but finitely many places.

The Selmer group associated to (M, (L,),) is then defined by

Sel(M, (L)) = ker <H1(GF,M)m> I1 Hl(GV,M)/£V>.
v of F



Example I: Class groups

Given the number field F, take L to be the maximal abelian
extension of F that is unramified everywhere. Artin reciprocity
gives an isomorphism

Gal(L/F) = CIF.

Choose a positive integer n. For every place v of F, take £, to be
the subset of unramified elements in H*(G,,Z/nZ). Then

(CIF)*[n] = Hom (Gal(L/F),Z/nZ) = Sel(Z/nZ, (L)),

where the (Cl F)* denotes the Pontryagin dual Hom(Cl F,Q/Z).



Example Il: Class groups, again

Choose a number field F and a positive integer n. Define
SenF ={ae F*/(F*)" : (a) = 1" for some fractional ideal /}.
The map from «a to / gives a well-defined map
SepF — CI F[n]

with kernel OF /(OF)".
The long exact sequence cohomology sequence associated to

lsun—F = F =1
gives a connecting map
§: F*J(F*)" == H"(GF, n)

that is an isomorphism by Hilbert 90.



Example Il: Class groups, again
We defined
Se,F ={ae F*/(F*)" : (a) = I" for some fractional ideal /}
and considered the connecting map
& F*J(F*)" = H'(GF, jtn)

and a surjection Se,F — CI F[n].

Given ¢ in HY(GF, 1n), we can verify that ¢ is in the image of
Se,F by checking that it satisfies a certain local condition £ at
each place v.

The map § then gives an isomorphism between Se,F and
Sel(pn, (£L),). We have an exact sequence

el

0= OFJ(OF)" 5 Sel(n, (LLE),) < CIF[n] — 0.



Example Ill: Selmer groups for abelian varieties

Choose an elliptic curve E over a number field F, and choose a
positive integer n. The long exact sequence associated to

0— E[n] — E(F) % E(F)—=0
gives connecting maps
§: E(F)/nE(F) < HY(Gg,E[n]) and
6,: E(F,)/nE(F,) — HY(G,, E[n]).

Take £, to be the image of §, in H}(G,, E[n]). Given x in
E(F)/nE(F), we find that §(x) restricts to lie in each L, .

We then have an exact sequence

0 — E(F)/nE(F) AN Sel(E[n], (£v)v) — OI(E/F)[n] — 0.



Selmer ranks

Given an elliptic curve E/F and a positive integer n, take r,(E) to
be the maximal integer r so there is some embedding

Sel(E[n], (£,).)
O (E(F)or)

Take o (E) to be the limit of the sequence ry(E), ra(E), rs(E) . ...

(Z/nZ)" <

Facts
» We have nn(E) > n(E) > --- > nw(E) > rank(E) > 0.
» (Conjectured) rye(E) = rank(E).
» The integers r(E), ra(E), ..., r(E) all have the same parity.
> If F =Q, the analytic rank of E has the same parity as £



Setup for the main Selmer result

We say an elliptic curve E/Q obeys the technical conditions if
either

> E satisfies E[2](Q) = (Z/2Z)? (full two torsion) and has no
rational cyclic 4-isogeny, or

> E satisfies £[2](Q) = 0 (no two torsion).

Definition

Given n > j > 0, take PA't(j}n) to be the probability that a
uniformly selected n x n alternating matrix with coefficients in Fy
has kernel of rank exactly j.

Take

, 1 , ,
PR (jloc) = 3 lim PAE(j|2n + ).



The main 2*-Selmer group result

Theorem (S.)

Suppose E /Q obeys the technical conditions. Choose k > 1, and
choose a sequence ry > ry > -+ - > rpx 2> 0 of integers. Then

i #{0<d<N: n(EY)=r,. .., r(EY) = r}
N—oo N

= PA't(r2k}r2k71) : PAIt(I’2k71|I’2k72) ~~~~~ PAIt(r4|r2) : PAIt(r2|OO

The sequence 2, ra, ..., rx behaves like a Markov process.



Selmer ranks as a Markov chain
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Table: Probability that rox(E?) equals r.

r
0 1 2 3 4 5
k 1].21 42 28 .08 .01 .00
2 .35 .49 .15 .01 .00
3|43 550 .07 .00
4 | .46 50 .04
5| .48 .50 .02
©|3 5 0 0 0 0



Main consequence

Theorem
Suppose the elliptic curve E /Q obeys the technical conditions.
Then, among the quadratic twists E9 of E,

> 50% have r equal to zero,
> 50% have r equal to one, and
» 0% have higher ryo.

This additionally holds in the case that

> E satisfies E[2](Q) = Z /27 (partial two-torsion) and, taking
E’ to be the associated isogenous curve, Q(E'[2]) # Q(E[2)]).



Setup for the main class group result

Given n > j > 0, take PMat(j|n) to be the probability that a
uniformly selected n x n matrix with coefficients in > has kernel of
rank exactly j.
Take
Mat/ » T Mat/ :
PY(jloo) = lim P (|n).

Given a number field F and a positive integer n, define the n-class
rank r,(F) to be the maximal integer r so there is some embedding

(Z/nZ)" — CIF.



The main 2%-class group result

Theorem (S.)

Given a sequence of integers ry > rg > -+ > rx > 0, we have

lim #{0 <d<N : ra (Q(\/j)) =", ..., I’2k(Q(\/—7d)) — fzk}

N—oo N

= PMat(r2k|r2k_1) : PMat(rzk_1‘r2k_z) ----- PMat(rg|r4) : PMat(r4|OO).

For any C > 0, 100% of imaginary quadratic fields K have
I’Q(K) > C.



Class ranks as a Markov chain

Table: Probability that ru(Q(v/—d))

equals r
r
0 1 2 3 4
k 2 ].29 58 .13 .01 .00
3 1.63 .36 .01 .00
4 |1 .81 .19 .00
5 1.91 .09
6 | .95 .05
oo | 1 0 0 0 0



A couple leading questions

» Why do these heuristics involve matrices over F»? Given an
imaginary quadratic field F, is there some important
rok(F) % ryx(F) matrix whose kernel has dimension ryi1(F)?
» Why are the matrices for Selmer ranks of elliptic curves
alternating and the matrices for class ranks potentially
non-alternating?

» Are there families of number fields where the associated
matrices have some sort of forced symmetry?



Part |ll:
The Cassels-Tate pairing

(Joint with Adam Morgan)



Selmerable modules

Given a number field F, we will define a category SModg. Its
objects will be tuples (M, (L)), where M is a finite Ge module,
and where

L, C HY(G,,M) for each v,

with £, equaling the set of unramified classes at v for all but
finitely many places v.

A morphism f: (M, (L,),) — (M',(L),) is any homomorphism
f: M — M satisfying

f(L,) C L, forallv.

With this notion of morphism, the notation

Sel(M, (L)) = ker (Hl(GF,M)m 11 Hl(GV,M)/£V>

v of F

defines a functor Sel: SModg — Ab.



The dual Selmerable module

Given (M, (Ly),) in SModg, and given n divisible by the order of

n, define
MY = Hom(M, ).

Local Tate duality gives a bilinear pairing
HY(G,, M) ® H(G,,M") — Q/Z.

Taking £ to be the orthogonal complement to £, with respect to
this pairing, we define

(M’ (‘Cv)v)v = (Mv7 (‘C\J/_>V)

This defines a contravariant functor V: SModg — SModf.



A fun fact

Given (M, (L,)y) in SModg, we always have

#SelM  #HO(Gr, M (G, M) - L, \"2
H#HO

#Sel MV~ #HO(G, /v/v Gy, MV) - #LL

This is sometimes called Wiles' formula.



Exact sequences in SModFg

We call a diagram
E = |0 (M, (£1)y) = (M, (L)) == (M, (£20),) = 0)
in SModf exact if it gives an exact sequence of Gg-modules and
L1, =:YL,) and Lo =7(L))

for all v.
Given an exact sequence E, the dual diagram

EV=1{0— M =M “m o

in SModFf is also exact.



Question

Given an exact sequence
E=[0— M M5 M0

in SModg, and given ¢ in Sel Ma, how can we tell if ¢ lifts to an
element of Sel M?



The Cassels-Tate pairing

Theorem (Morgan-S.)

Given exact sequences
E=[0> M 5 M " M -0 and
EV=[0— My = MY - My — 0
in SModfg, we have a natural bilinear pairing
CTPg: Sel My, ® Sel My — Q/Z
with left and right kernels
m(SelM) and 1Y (Sel MY),

respectively.



The Cassels-Tate pairing

From the exact sequence
E=[0— M 5 M M -0,

in SModf, we can always derive an exact sequence

SelMy —“— Sel M — ™5 Sel M, %

£—> (Sel MYy L (sel vy U (el My

of finite abelian groups.



Symmetry

The Cassels-Tate pairing for
v v o m’ v oY v
E :[O—>M2 — MY — My —>0},
is a bilinear map
CTPgv: Sel My ® Sel MyY — Q/Z,

compared to CTPg: Sel My @ Sel My — Q/Z.
Theorem (Morgan-S.)

Given
¢ € Sel My = Sel MyY and 1) € Sel MY,

we have

CTPev(v, ¢) = CTPe(0, 7).



Naturality

Given a commutative diagram

E, = [0 Mla = Ma i M2a 0}
lfl lf lf
E, = [0 Mip —2— My —— My, 0],

in SModfg with exact rows, and given ¢ in Sel Mp, and ¢ in
Sel My,, we have

CTPg, (¢, ' (¢)) = CTPg, (f2(9), 7).



Naturality + Symmetry

Given a commutative diagram

E = [0 Ml - M M2 O]
ol
EV = [0 My — MV My 0],

and given ¢, € Sel M,, we have

CTPe(¢, (1)) = CTPev(R(¥), ¢)
= CTPe(, £/ (9))

by symmetry
by naturality.



Cassels-Tate pairing for elliptic curves

Take A/F to be an elliptic curve over a number field, choose a
positive integer n, and consider

E, = [0 — A[n] — A[n*] — A[n] — 0]
in SModfg. From the Weil pairing, we have an isomorphism
fi: Alk] — AlK]Y

satisfying fV = —f for each k > 0.
From Naturality + Symmetry, we have

CTPE, (¢, fa(¢)) = —CTPE, (¢, fa(0))

for all ¢, € Sel A[n].
This antisymmetric pairing has kernel n - Sel A[n?].



The Markov chain

Question
Choose an elliptic curve A randomly with 2-Selmer rank r,. Why

should the probability that it has 4-Selmer rank ry equal
PAY (g rp)?

Our answer is that Cassels-Tate pairing associated to
0— A[2] — A[4] = A[2] —» 0

behaves like a random alternating r» X r» matrix as you move
through these elliptic curves.



The Markov chain

Question
Choose an elliptic curve A randomly with 4-Selmer rank ry. Why
should the probability that it has 8-Selmer rank rg equal
PA't(r8]r4)?
Considering the Cassels-Tate pairing on

E, = [0 — A[4] — A[16] — A[4] — 0],
we find that the definition

<2¢7 2¢> =2- CTPE4(¢a TIZ))

gives a well-defined alternating pairing

(,):2-Sel Al4] ®2-Sel A[4] — 1727
with kernel 4 - Sel A[8].

Our answer is that (, ) behaves like a random alternating ra X g
matrix.



Class groups

Take F to be a number field and choose n > 1. Previously, we
gave an isomorphism

(CLF)*[n] = Sel(Z/nZ, (L))
and an exact sequence
0= OF/(0F)" -5 Sel(un, (LL),) =< CIF[n] — 0.
The natural pairing
(CIF)*[n]® CI F[n] — 17/Z,

has kernels n - (Cl F)*[n?] and n- Cl F[n?], and can be identified via
el with the Cassels-Tate pairing

Sel Z/nZ ® Sel pp — 17/7
associated with the sequence

0 — Z/nZ — 7./n*7 — 7./ nZ — 0.



Symmetry?

If F contains u,, we can embed Sel Z/nZ in Sel uu,, via an
isomorphism Z/nZ to p,, but there's no reason a priori to expect
the corresponding Cassels-Tate pairing

Sel Z/nZ © Sel Z/nZ — 17/ 7

to have any kind of symmetry.

In the elliptic curve case, an isomorphism A[n?] —— A[n?]" led to
the symmetry. So it was not surprising to find

Theorem (Morgan-S., Lipnowski-Sawin-Tsimerman '20)

If F contains p,2, the above pairing is a symmetric pairing.



Imaginary quadratic fields

Because the imaginary quadratic fields almost never have extra
roots of unity, we expect the Cassels-Tate pairing that gives the
4-class rank from the 2-class rank to just be a random r, X r»
matrix in [Fp, etc.



Part [V: Why 27



2-torsion

Given an elliptic curve A/Q and a squarefree integer d > 1, there
is a geometric isomorphism

Byg: A9 = A

given by scaling both coordinates.

This is not a Gg-equivariant map. Otherwise, twisting wouldn’t be
very interesting.

However, it is equivariant on two torsion. In particular, we can
consider Sel A?[2] as a subgroup of H(GFr, A[2]).

The question for 2-Selmer groups then becomes “How does the
portion of H!(Gf, A[2]) cut out by a random set of local
conditions behave?"”, which is easier.



8-torsion?

Given squarefree integers di, d, d3, we can express the Ge-module
Adads[g]
as a subquotient of
Al8] @ A%[8] @ A®[8] © A%[8] & A%%[8] & A%%[8] @ AT%g].
E.g. the module A39[8] can be found as a subquotient of
A[8] @ A%[8] @ A%[8] @ A°[8] @ A°[8] @ AO[8] @ A™S[8].

And A?19[16] can be found as a similar subquotient, etc.



The plan

From this trick, once we have the 2X-Selmer groups of a somewhat
sparse portion of the twists with d < N, we can figure out the
2k_Selmer groups at all the other twists.

We need to show that, no matter how the 2X-Selmer groups of this
sparse set of twists behave, the Cassels-Tate pairings that give
2k+1_Selmer ranks are forced to be uniformly distributed among all
alternating possibilities.

This is possible, but requires a fiddly blend of algebra,
combinatorics, and analysis.



Some bad news

A[3] is not a subquotient of

P A3l

d#[]



Thank you!



