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Part I: Ranks



Goldfeld’s conjecture

Definition
Given an elliptic curve

E : y2 = x3 + ax + b

defined over Q, and given a nonzero integer d , the quadratic twist
Ed is defined to be the curve

Ed : y2 = x3 + d2ax + d3b.

Conjecture (Goldfeld 1979)
Given any elliptic curve E/Q,
I 50% of the quadratic twists of E have rank zero,
I 50% of the quadratic twists of E have rank one, and
I 0% have any higher rank.



The minimalist conjecture

Goldfeld’s conjecture is sometimes called the minimalist conjecture.
It predicts that rank is as small “as possible” for 100% of twists.

Question
Why should a positive percentage of twists have positive rank?

Given E/Q, one fundamental invariant of E is its global root
number w(E ) ∈ ±1.
I If w(E ) = +1, L(s,E ) has even order of vanishing at s = 1.
I If w(E ) = −1, L(s,E ) has odd order of vanishing at s = 1.

Conjecture (Birch and Swinnerton-Dyer)
The order of vanishing of L(s,E ) at s = 1 equals the rank of E .



The minimalist conjecture

For fixed E , half the quadratic twists Ed of E have w(Ed ) = +1,
and the remainder have w(Ed ) = −1.

Conjecture (Goldfeld 1979 revisited)
Given any elliptic curve E/Q,
I 100% of the twists with w(Ed ) = +1 have rank zero,
I 100% of the twists with w(Ed ) = −1 have rank one, and
I 0% have any higher rank.



The main result for ranks

Conjecture (Goldfeld 1979 revisited)
Given any elliptic curve E/Q,
I 100% of the twists with w(Ed ) = +1 have rank zero,
I 100% of the twists with w(Ed ) = −1 have rank one, and
I 0% have any higher rank.

Theorem (S.)
Given an elliptic curve E/Q whose 4-torsion obeys some technical
conditions,
I 100% of the twists with w(Ed ) = +1 have rank zero,
I 100% of the twists with w(Ed ) = −1 have rank at most one,

and
I 0% have any higher rank.



Example: Congruent numbers

Definition
A positive integer d is called a congruent number if it is the area
of a right triangle with rational side lengths.



Example: Congruent numbers
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Example: Congruent number

6803298487826435051217540
411340519227716149383203

411340519227716149383203
21666555693714761309610

Area 157

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

Don Zagier, 1984.



Example: non-congruent numbers

?

?
?

Area 1

Theorem (Fermat, 1600s)
1 is not a congruent number.



Example: Congruent numbers

A positive integer d is a congruent number if and only if the
elliptic curve

Ed
CN : y2 = x3 − d2x

has positive rank over Q.

Proposition
Given a positive integer d,
I w(Ed

CN) = +1 if d equals 1, 2, or 3 mod 8, and
I w(Ed

CN) = −1 if d equals 5, 6, or 7 mod 8.

Our theorem shows that 0% of d equal to 1, 2, or 3 mod 8 are
congruent numbers.
It doesn’t say anything about d equal to 5, 6 or 7 mod 8.



Bounds for 0%

Given ε > 0 and N � 0, the number of congruent numbers d < N
that equal 1, 2, or 3 mod 8 is predicted to be at most

N3/4+ε.

In 2017, we bounded this number by

N
(log log log log log N)1/3 .

Our current best proven bound is

N
exp

(
(log log log H)1/2) .



Part II:
Selmer Groups



Defining Selmer groups

Definition
Fix a number field F , and take GF = Gal(F/F ). Given a place v of
F , take Gv to be the absolute Galois group of the completion of F
at v .
Choose a finite GF -module M. For each place v of F , choose a
subgroup Lv of H1(Gv ,M). We assume Lv is the set of unramified
classes at all but finitely many places.
The Selmer group associated to (M, (Lv )v ) is then defined by

Sel(M, (Lv )v ) = ker
(

H1(GF ,M) ⊕v resGv−−−−−→
∏

v of F
H1(Gv ,M)/Lv

)
.



Example I: Class groups

Given the number field F , take L to be the maximal abelian
extension of F that is unramified everywhere. Artin reciprocity
gives an isomorphism

Gal(L/F ) ∼= Cl F .

Choose a positive integer n. For every place v of F , take Lv to be
the subset of unramified elements in H1(Gv ,Z/nZ). Then

(Cl F )∗[n] ∼= Hom (Gal(L/F ),Z/nZ) = Sel (Z/nZ, (Lv )v ) ,

where the (Cl F )∗ denotes the Pontryagin dual Hom(Cl F ,Q/Z).



Example II: Class groups, again
Choose a number field F and a positive integer n. Define

SenF =
{
α ∈ F×/(F×)n : (α) ≡ In for some fractional ideal I

}
.

The map from α to I gives a well-defined map

SenF � Cl F [n]

with kernel O×F /(O×F )n.
The long exact sequence cohomology sequence associated to

1→ µn → F× → F× → 1

gives a connecting map

δ : F×/(F×)n ∼−−→ H1(GF , µn)

that is an isomorphism by Hilbert 90.



Example II: Class groups, again
We defined

SenF =
{
α ∈ F×/(F×)n : (α) ≡ In for some fractional ideal I

}
and considered the connecting map

δ : F×/(F×)n ∼−−→ H1(GF , µn)

and a surjection SenF � Cl F [n].
Given φ in H1(GF , µn), we can verify that φ is in the image of
SenF by checking that it satisfies a certain local condition L⊥v at
each place v .
The map δ then gives an isomorphism between SenF and
Sel(µn, (L⊥v )v ). We have an exact sequence

0→ O×F /(O×F )n δ−→ Sel(µn, (L⊥v )v ) πCl−−−→ Cl F [n]→ 0.



Example III: Selmer groups for abelian varieties

Choose an elliptic curve E over a number field F , and choose a
positive integer n. The long exact sequence associated to

0→ E [n]→ E (F ) ·n−→ E (F )→ 0

gives connecting maps

δ : E (F )/nE (F ) ↪→ H1(GF ,E [n]) and
δv : E (Fv )/nE (Fv ) ↪→ H1(Gv ,E [n]).

Take Lv to be the image of δv in H1(Gv ,E [n]). Given x in
E (F )/nE (F ), we find that δ(x) restricts to lie in each Lv .
We then have an exact sequence

0→ E (F )/nE (F ) δ−→ Sel(E [n], (Lv )v )→X(E/F )[n]→ 0.



Selmer ranks

Given an elliptic curve E/F and a positive integer n, take rn(E ) to
be the maximal integer r so there is some embedding

(Z/nZ)r ↪−−→ Sel(E [n], (Lv )v )
δ (E (F )tor)

.

Take r2∞(E ) to be the limit of the sequence r2(E ), r4(E ), r8(E ) . . . .

Facts
I We have r2(E ) ≥ r4(E ) ≥ · · · ≥ r2∞(E ) ≥ rank(E ) ≥ 0.
I (Conjectured) r2∞(E ) = rank(E ).
I The integers r2(E ), r4(E ), . . . , r2∞(E ) all have the same parity.
I If F = Q, the analytic rank of E has the same parity as E



Setup for the main Selmer result

We say an elliptic curve E/Q obeys the technical conditions if
either
I E satisfies E [2](Q) ∼= (Z/2Z)2 (full two torsion) and has no

rational cyclic 4-isogeny, or
I E satisfies E [2](Q) = 0 (no two torsion).

Definition
Given n ≥ j ≥ 0, take PAlt(j

∣∣n) to be the probability that a
uniformly selected n × n alternating matrix with coefficients in F2
has kernel of rank exactly j .
Take

PAlt(j
∣∣∞) = 1

2 lim
n→∞

PAlt(j
∣∣2n + j).



The main 2k-Selmer group result

Theorem (S.)
Suppose E/Q obeys the technical conditions. Choose k > 1, and
choose a sequence r2 ≥ r4 ≥ · · · ≥ r2k ≥ 0 of integers. Then

lim
N→∞

#
{

0 < d < N : r2(Ed ) = r2, . . . , r2k (Ed ) = r2k
}

N

= PAlt(r2k
∣∣r2k−1) · PAlt(r2k−1

∣∣r2k−2) · · · · · PAlt(r4
∣∣r2) · PAlt(r2

∣∣∞)

The sequence r2, r4, . . . , r2k behaves like a Markov process.



Selmer ranks as a Markov chain
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Table: Probability that r2k (E d ) equals r .

r
0 1 2 3 4 5

k 1 .21 .42 .28 .08 .01 .00
2 .35 .49 .15 .01 .00
3 .43 .50 .07 .00
4 .46 .50 .04
5 .48 .50 .02
...

...
...

...

∞ 1
2

1
2 0 0 0 0



Main consequence

Theorem
Suppose the elliptic curve E/Q obeys the technical conditions.
Then, among the quadratic twists Ed of E ,
I 50% have r2∞ equal to zero,
I 50% have r2∞ equal to one, and
I 0% have higher r2∞ .

This additionally holds in the case that
I E satisfies E [2](Q) ∼= Z/2Z (partial two-torsion) and, taking

E ′ to be the associated isogenous curve, Q(E ′[2]) 6= Q(E [2]).



Setup for the main class group result

Given n ≥ j ≥ 0, take PMat(j
∣∣n) to be the probability that a

uniformly selected n× n matrix with coefficients in F2 has kernel of
rank exactly j .
Take

PMat(j
∣∣∞) = lim

n→∞
PMat(j

∣∣n).

Given a number field F and a positive integer n, define the n-class
rank rn(F ) to be the maximal integer r so there is some embedding

(Z/nZ)r ↪−−→ Cl F .



The main 2k-class group result

Theorem (S.)
Given a sequence of integers r4 ≥ r8 ≥ · · · ≥ r2k ≥ 0, we have

lim
N→∞

#
{

0 < d < N : r4
(
Q(
√
−d)

)
= r4, . . . , r2k (Q(

√
−d)) = r2k

}
N

= PMat(r2k
∣∣r2k−1) · PMat(r2k−1

∣∣r2k−2) · · · · · PMat(r8
∣∣r4) · PMat(r4

∣∣∞).

For any C ≥ 0, 100% of imaginary quadratic fields K have
r2(K ) > C .



Class ranks as a Markov chain
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Table: Probability that r2k (Q(
√
−d))

equals r

r
0 1 2 3 4

k 2 .29 .58 .13 .01 .00
3 .63 .36 .01 .00
4 .81 .19 .00
5 .91 .09
6 .95 .05
...

...
...

∞ 1 0 0 0 0



A couple leading questions

I Why do these heuristics involve matrices over F2? Given an
imaginary quadratic field F , is there some important
r2k (F )× r2k (F ) matrix whose kernel has dimension r2k+1(F )?

I Why are the matrices for Selmer ranks of elliptic curves
alternating and the matrices for class ranks potentially
non-alternating?

I Are there families of number fields where the associated
matrices have some sort of forced symmetry?



Part III:
The Cassels-Tate pairing

(Joint with Adam Morgan)



Selmerable modules
Given a number field F , we will define a category SModF . Its
objects will be tuples (M, (Lv )v ), where M is a finite GF module,
and where

Lv ⊆ H1(Gv ,M) for each v ,

with Lv equaling the set of unramified classes at v for all but
finitely many places v .
A morphism f : (M, (Lv )v )→ (M ′, (L′v )v ) is any homomorphism
f : M → M ′ satisfying

f (Lv ) ⊆ L′v for all v .

With this notion of morphism, the notation

Sel(M, (Lv )v ) = ker
(

H1(GF ,M) ⊕v resGv−−−−−→
∏

v of F
H1(Gv ,M)/Lv

)

defines a functor Sel : SModF → Ab.



The dual Selmerable module

Given (M, (Lv )v ) in SModF , and given n divisible by the order of
n, define

M∨ = Hom(M, µn).

Local Tate duality gives a bilinear pairing

H1(Gv ,M)⊗ H1(Gv ,M∨)→ Q/Z.

Taking L⊥v to be the orthogonal complement to Lv with respect to
this pairing, we define

(M, (Lv )v )∨ =
(
M∨,

(
L⊥v
)

v

)
.

This defines a contravariant functor ∨ : SModF → SModF .



A fun fact

Given (M, (Lv )v ) in SModF , we always have

#Sel M
#Sel M∨ = #H0(GF ,M)

#H0(GF ,M∨) ·
(∏

v

#H0(Gv ,M) ·#Lv
#H0(Gv ,M∨) ·#L⊥v

)1/2

.

This is sometimes called Wiles’ formula.



Exact sequences in SModF

We call a diagram

E =
[
0→ (M1, (L1v )v ) ι−→ (M, (Lv )v ) π−−→ (M2, (L2v )v )→ 0

]
in SModF exact if it gives an exact sequence of GF -modules and

L1v = ι−1(Lv ) and L2v = π(Lv )

for all v .
Given an exact sequence E , the dual diagram

E∨ =
[

0→ M∨2
π∨−−→ M∨ ι∨−−→ M∨1 → 0

]
in SModF is also exact.



Question

Given an exact sequence

E =
[
0→ M1

ι−→ M π−−→ M2 → 0
]

in SModF , and given φ in Sel M2, how can we tell if φ lifts to an
element of Sel M?



The Cassels-Tate pairing

Theorem (Morgan-S.)
Given exact sequences

E =
[
0→ M1

ι−→ M π−−→ M2 → 0
]

and

E∨ =
[
0→ M∨2

π∨−−→ M∨ ι∨−−→ M∨1 → 0
]

in SModF , we have a natural bilinear pairing

CTPE : Sel M2 ⊗ Sel M∨1 → Q/Z

with left and right kernels

π(Sel M) and ι∨(Sel M∨),

respectively.



The Cassels-Tate pairing

From the exact sequence

E =
[
0→ M1

ι−→ M π−−→ M2 → 0
]
,

in SModF , we can always derive an exact sequence

Sel M1 Sel M Sel M2

(Sel M∨1 )∗ (Sel M∨)∗ (Sel M∨2 )∗

ι π CTPE

(ι∨)∗ (π∨)∗

of finite abelian groups.



Symmetry

The Cassels-Tate pairing for

E∨ =
[
0→ M∨2

π∨−−→ M∨ ι∨−−→ M∨1 → 0
]
,

is a bilinear map

CTPE∨ : Sel M∨1 ⊗ Sel M∨∨2 → Q/Z,

compared to CTPE : Sel M2 ⊗ Sel M∨1 → Q/Z.

Theorem (Morgan-S.)
Given

φ ∈ Sel M2 ∼= Sel M∨∨2 and ψ ∈ Sel M∨1 ,

we have
CTPE∨(ψ, φ) = CTPE (φ, ψ).



Naturality

Given a commutative diagram

Ea =
[

0 M1a Ma M2a 0
]

Eb =
[

0 M1b Mb M2b 0
]
,

f1

ιa

f

πa

f2
ιb πb

in SModF with exact rows, and given φ in Sel M2a and ψ in
Sel M∨1b, we have

CTPEa

(
φ, f ∨1 (ψ)

)
= CTPEb (f2(φ), ψ) .



Naturality + Symmetry

Given a commutative diagram

E =
[

0 M1 M M2 0
]

E∨ =
[

0 M∨2 M∨ M∨1 0
]
,

f1

ι

f

π

f2

π∨ ι∨

and given φ, ψ ∈ Sel M2, we have

CTPE (φ, f2(ψ)) = CTPE∨(f2(ψ), φ) by symmetry
= CTPE (ψ, f ∨1 (φ)) by naturality.



Cassels-Tate pairing for elliptic curves

Take A/F to be an elliptic curve over a number field, choose a
positive integer n, and consider

En =
[
0→ A[n]→ A[n2]→ A[n]→ 0

]
in SModF . From the Weil pairing, we have an isomorphism

fk : A[k]→ A[k]∨

satisfying f ∨ = −f for each k ≥ 0.
From Naturality + Symmetry, we have

CTPEn (φ, fn(ψ)) = −CTPEn (ψ, fn(φ))

for all φ, ψ ∈ Sel A[n].
This antisymmetric pairing has kernel n · Sel A[n2].



The Markov chain

Question
Choose an elliptic curve A randomly with 2-Selmer rank r2. Why
should the probability that it has 4-Selmer rank r4 equal
PAlt(r4|r2)?
Our answer is that Cassels-Tate pairing associated to

0→ A[2]→ A[4]→ A[2]→ 0

behaves like a random alternating r2 × r2 matrix as you move
through these elliptic curves.



The Markov chain

Question
Choose an elliptic curve A randomly with 4-Selmer rank r4. Why
should the probability that it has 8-Selmer rank r8 equal
PAlt(r8|r4)?
Considering the Cassels-Tate pairing on

E4 =
[
0→ A[4]→ A[16]→ A[4]→ 0

]
,

we find that the definition
〈2φ, 2ψ〉 = 2 · CTPE4(φ, ψ)

gives a well-defined alternating pairing
〈 , 〉 : 2 · Sel A[4]⊗ 2 · Sel A[4]→ 1

2Z/Z

with kernel 4 · Sel A[8].
Our answer is that 〈 , 〉 behaves like a random alternating r4 × r4
matrix.



Class groups
Take F to be a number field and choose n > 1. Previously, we
gave an isomorphism

(Cl F )∗[n] ∼= Sel(Z/nZ, (Lv )v )

and an exact sequence

0→ O×F /(O×F )n δ−→ Sel(µn, (L⊥v )v ) πCl−−−→ Cl F [n]→ 0.

The natural pairing

(Cl F )∗[n]⊗ Cl F [n]→ 1
nZ/Z,

has kernels n · (Cl F )∗[n2] and n · Cl F [n2], and can be identified via
πCl with the Cassels-Tate pairing

SelZ/nZ⊗ Selµn −−→ 1
nZ/Z

associated with the sequence

0→ Z/nZ→ Z/n2Z→ Z/nZ→ 0.



Symmetry?

If F contains µn, we can embed SelZ/nZ in Selµn via an
isomorphism Z/nZ to µn, but there’s no reason a priori to expect
the corresponding Cassels-Tate pairing

SelZ/nZ⊗ SelZ/nZ −−→ 1
nZ/Z

to have any kind of symmetry.
In the elliptic curve case, an isomorphism A[n2] ∼−−→ A[n2]∨ led to
the symmetry. So it was not surprising to find

Theorem (Morgan-S., Lipnowski-Sawin-Tsimerman ’20)
If F contains µn2 , the above pairing is a symmetric pairing.



Imaginary quadratic fields

Because the imaginary quadratic fields almost never have extra
roots of unity, we expect the Cassels-Tate pairing that gives the
4-class rank from the 2-class rank to just be a random r2 × r2
matrix in F2, etc.



Part IV: Why 2?



2-torsion

Given an elliptic curve A/Q and a squarefree integer d > 1, there
is a geometric isomorphism

βd : Ad → A

given by scaling both coordinates.
This is not a GF -equivariant map. Otherwise, twisting wouldn’t be
very interesting.
However, it is equivariant on two torsion. In particular, we can
consider Sel Ad [2] as a subgroup of H1(GF ,A[2]).
The question for 2-Selmer groups then becomes “How does the
portion of H1(GF ,A[2]) cut out by a random set of local
conditions behave?”, which is easier.



8-torsion?

Given squarefree integers d1, d2, d3, we can express the GF -module

Ad1d2d3 [8]

as a subquotient of

A[8]⊕ Ad1 [8]⊕ Ad2 [8]⊕ Ad3 [8]⊕ Ad1d2 [8]⊕ Ad2d3 [8]⊕ Ad1d3 [8].

E.g. the module A30[8] can be found as a subquotient of

A[8]⊕ A2[8]⊕ A3[8]⊕ A5[8]⊕ A6[8]⊕ A10[8]⊕ A15[8].

And A210[16] can be found as a similar subquotient, etc.



The plan

From this trick, once we have the 2k -Selmer groups of a somewhat
sparse portion of the twists with d < N, we can figure out the
2k -Selmer groups at all the other twists.
We need to show that, no matter how the 2k -Selmer groups of this
sparse set of twists behave, the Cassels-Tate pairings that give
2k+1-Selmer ranks are forced to be uniformly distributed among all
alternating possibilities.
This is possible, but requires a fiddly blend of algebra,
combinatorics, and analysis.



Some bad news

A[3] is not a subquotient of ⊕
d 6=�

Ad [3].



Thank you!


