Cohesive powers of linear orders

Paul Shafer University of Leeds p.e.shafer@leeds.ac.uk http://www1.maths.leeds.ac.uk/~matpsh/

Computability Theory Seminar MSRI Decidability, Definability and Computability in Number Theory October 30, 2020

Joint work with: R. Dimitrov, V. Harizanov, A. Morozov, A. Soskova, and S. Vatev

Paul Shafer - Leeds

Cohesive powers of linear orders

Cohesive sets

Let

$$\vec{A} = (A_0, A_1, A_2, \dots)$$

be a countable sequence of subsets of \mathbb{N} .

Then there is an **infinite** set $C \subseteq \mathbb{N}$ such that, for every *i*:

either $C \subseteq^* A_i$ or $C \subseteq^* \mathbb{N} \setminus A_i$.

C is called **cohesive** for \vec{A} , or simply \vec{A} -cohesive.

If \vec{A} is the sequence of recursive sets, then C is called **r-cohesive**. If \vec{A} is the sequence of r.e. sets, then C is called **cohesive**.

Skolem's countable non-standard model of true arithmetic

Skolem (1934):

Let C be cohesive for the sequence of arithmetical sets.

Consider arithmetical functions $f, g: \mathbb{N} \to \mathbb{N}$. Define:

$$\begin{array}{lll} f =_C g & \text{if} & C \subseteq^* \{n : f(n) = g(n)\} \\ f < g & \text{if} & C \subseteq^* \{n : f(n) < g(n)\} \\ (f + g)(n) & = & f(n) + g(n) \\ (f \times g)(n) & = & f(n) \times g(n) \end{array}$$

Let $[f] = \{g : g =_C f\}$ denote the $=_C$ -equivalence class of f.

Form a structure \mathcal{M} with domain $\{[f] : f \text{ arithmetical}\}$ and

$$[f] < [g] \text{ if } f < g; \qquad [f] + [g] = [f + g]; \qquad [f] \times [g] = [f \times g].$$

Then \mathcal{M} models true arithmetic!

- The standard elements of ${\mathcal M}$ are those represented by constant functions.
- The non-standard part of ${\mathcal M}$ is everything else. Note $[\mathrm{id}]$ is non-standard.

Effectivizing Skolem's construction

Tennenbaum wanted to know:

What if we did Skolem's construction, but

- used recursive functions $f \colon \mathbb{N} \to \mathbb{N}$ in place of arithmetical functions;
- only assumed that C is r-cohesive?

Do we still get models of true arithmetic?

Feferman-Scott-Tennenbaum (1959):

It is not even possible to get models of Peano arithmetic in this way.

Let $\Pi_C(\mathbb{N}; <, +, \times)$ denote the **cohesive power** of the standard model of arithmetic by the (r-)cohesive set C.

Theorem (Lerman 1970)

Let C and D be co-r.e. cohesive sets. Then $\Pi_C(\mathbb{N};<,+,\times)$ and $\Pi_D(\mathbb{N};<,+,\times)$ are elementarily equivalent if and only if $C \equiv_{\mathrm{m}} D$.

Cohesive powers

Dimitrov (2009):

Let \mathcal{A} be a computable structure.

(i.e., \mathcal{A} has domain \mathbb{N} and recursive functions and relations.)

Let C be cohesive. Form the **cohesive power** $\Pi_C \mathcal{A}$ of \mathcal{A} by C:

Consider partial recursive $\varphi, \psi \colon \mathbb{N} \to \mathbb{N}$ with $C \subseteq^* \operatorname{dom}(\varphi)$. Define:

$$\begin{split} \varphi &=_C \psi & \text{if} & C \subseteq^* \{n : \varphi(n) = \psi(n)\} \\ R(\psi_0, \dots, \psi_{k-1}) & \text{if} & C \subseteq^* \{n : R(\psi_0(n), \dots, \psi_{k-1}(n))\} \\ F(\psi_0, \dots, \psi_{k-1})(n) & = & F(\psi_0(n), \dots, \psi_{k-1}(n)) \end{split}$$

Let $[\varphi]$ denote the $=_C$ -equivalence class of φ .

Let $\Pi_C \mathcal{A}$ be the structure with domain $\{[\varphi] : C \subseteq^* \operatorname{dom}(\varphi)\}$ and $R([\psi_0], \dots, [\psi_{k-1}])$ if $R(\psi_0, \dots, \psi_{k-1})$ $F([\psi_0], \dots, [\psi_{k-1}]) = [F(\psi_0, \dots, \psi_{k-1})].$

A little Łoś

For cohesive powers:

- 1 Łoś's theorem holds for Σ_2 sentences and Π_2 sentences.
- **2** A one-way Łoś's theorem holds for Π_3 sentences.

('Sentence' means a sentence in the language of the structure under consideration.)

Theorem (Łoś's theorem for cohesive powers; Dimitrov)

Let ${\mathcal A}$ be a computable structure, and let ${\mathcal C}$ be cohesive. Then

1 If θ is a Σ_2 sentence or a Π_2 sentence, then

 $\Pi_C \mathcal{A} \models \theta$ if and only if $\mathcal{A} \models \theta$.

2 If θ is a Π_3 sentence, then

$$\Pi_C \mathcal{A} \models \theta$$
 implies $\mathcal{A} \models \theta$.

A dual investigation to Lerman's

Lerman's investigation:

- Fix a computable presentation $\mathcal A$ of a computably-presentable structure.
- Vary the cohesive set C.
- See what structures $\Pi_C \mathcal{A}$ arise as cohesive powers.
- **Result**: For co-r.e. cohesive sets C and D, $\Pi_C(\mathbb{N}; <, +, \times) \equiv \Pi_D(\mathbb{N}; <, +, \times)$ if and only if $C \equiv_{\mathrm{m}} D$.

Our investigation:

- Fix a co-r.e. cohesive set C.
- Fix a computably-presentable structure.
- Vary the computable presentation \mathcal{A} of the structure.
- See what structures $\Pi_C \mathcal{A}$ arise as cohesive powers.

Moving the setting from arithmetic to linear orders

Lerman's structure is $(\mathbb{N}; <, +, \times)$.

- Only one presentation of $(\mathbb{N};<,+,\times),$ up to recursive isomorphism.
- I do not know names for models of PA⁻ (besides the standard one).
- I.e., you can say whether or not two cohesive powers $\Pi_C(\mathbb{N};<,+,\times)$ and $\Pi_D(\mathbb{N};<,+,\times)$ are the same, but it is hard to identify a cohesive power $\Pi_C(\mathbb{N};<,+,\times)$ as some previously-known structure.

We study linear orders instead of arithmetic.

- Lots of linear orders have names!
 - ω is the order-type of $(\mathbb{N}, <)$.
 - ζ is the order-type of $(\mathbb{Z}, <)$.
 - η is the order-type of $(\mathbb{Q}, <)$.
- Even more names: $\omega + \omega \quad \omega^* \quad \omega + \eta \quad \omega + \zeta \eta$ etc.
- The linear order ω has lots of computable presentations.

Cohesive powers of linear orders: Basic results

(D H M Sh So V)

Let ${\mathcal L}$ and ${\mathcal M}$ be computable linear orders, and let ${\it C}$ be cohesive. Then:

- $\Pi_C(\mathcal{L} + \mathcal{M}) \cong \Pi_C \mathcal{L} + \Pi_C \mathcal{M}$
- $\Pi_C(\mathcal{LM}) \cong (\Pi_C \mathcal{L})(\Pi_C \mathcal{M})$
- $\Pi_C \mathcal{L}^* \cong (\Pi_C \mathcal{L})^*.$

Let $\mathbb{N}=(\mathbb{N},<)$ denote the standard presentation of $\omega,$ and let C be cohesive. Then:

$$\Pi_C \mathbb{N} \cong \omega + \zeta \eta.$$

(Recall that $\omega + \zeta \eta$ is the order-type of countable non-standard models of PA.)

There is a computable copy \mathcal{L} of ω that is **not** recursively isomorphic to the standard presentation such that for every cohesive set C:

$$\Pi_C \mathcal{L} \cong \omega + \zeta \eta.$$

Are there other cohesive powers of copies of ω ?

Question: Is it possible to achieve linear orders other than $\omega + \zeta \eta$ as cohesive powers of computable copies of ω ?

Previous slide: To make $\Pi_C \mathcal{L} \cong \omega + \zeta \eta$, you would have to do more than make \mathcal{L} not recursively isomorphic to the standard presentation of ω .

We show:

Theorem (D H M Sh So V) For every co-r.e. cohesive set C, there is a computable copy \mathcal{L} of ω such that $\Pi_C \mathcal{L} \cong \omega + \eta.$

Notice: The Π_3 sentence "every point has an immediate successor" is satisfied by ω but not by $\omega + \eta$. So Łoś's theorem for cohesive powers is **optimal**.

More generally: We show that it is possible to achieve

 $\omega+{\rm various}\ {\rm shuffles}$

as cohesive powers of computable copies of ω .

Paul Shafer - Leeds

Shuffles, blocks, and condensations

Recall the shuffle $\sigma(X)$ of an at-most-countable collection X of linear orders:

- List X as $(\mathcal{L}_i : i < |X|)$.
- Paint \mathbb{Q} with |X| many colors so that each color occurs densely.
- Replace each point in \mathbb{Q} of color *i* with a copy of \mathcal{L}_i .

For example, $\sigma(\{2,3\})$ consists of dense copies of 2 and dense copies of 3.

Let $\mathcal{L} = (L, \prec_L)$ be a linear order.

• The finite condensation $c_F(x)$ of an $x \in L$ is

 $\mathbf{c}_{\mathrm{F}}(x) = \{y \in L : \text{there are only finitely many points between } x \text{ and } y\}.$

- Also call $c_F(x)$ a **block** of \mathcal{L} . Blocks are maximal discrete intervals.
- The finite condensation of $\mathbf{c}_F(\mathcal{L})$ of \mathcal{L} is

$$\mathbf{c}_{\mathrm{F}}(\mathcal{L}) = \{ \mathbf{c}_{\mathrm{F}}(x) : x \in L \}.$$

For example, $\mathbf{c}_{\mathrm{F}}(\boldsymbol{\sigma}(\{\mathbf{2},\mathbf{3}\})) \cong \eta$.

A few more facts about cohesive powers of linear orders

A computable linear order \mathcal{L} canonically embeds into its cohesive powers $\Pi_C \mathcal{L}$ by $x \mapsto [\text{the constant function with value } x].$

Let ${\mathcal L}$ be a computable copy of $\omega,$ and let C be a cohesive set.

- The range of the canonical embedding is an initial segment of $\Pi_C \mathcal{L}$.
- So $\Pi_C \mathcal{L} \cong \omega + \mathcal{M}$ for some linear order \mathcal{M} .
- Call the ω -part of $\Pi_C \mathcal{L}$ the standard part.
- Call the \mathcal{M} -part of $\Pi_C \mathcal{L}$ the non-standard part. Note $[id] \in \mathcal{M}$.

Theorem (D H M Sh So V)

Let \mathcal{L} be a computable linear order, and let C be a co-r.e. cohesive set.

- The condensation $\mathbf{c}_{\mathrm{F}}(\Pi_{C}\mathcal{L})$ is dense.
- If $\mathcal{L} \cong \omega$, then $\mathbf{c}_{\mathrm{F}}(\Pi_{C}\mathcal{L}) \cong \mathbf{1} + \eta$.

Upshot: Aim to make $\Pi_C \mathcal{L} \cong \omega + a$ shuffle of discrete linear orders.

Achieving $\Pi_C \mathcal{L} \cong \omega + \eta$

Theorem (D H M Sh So V)

For every co-r.e. cohesive set C, there is a computable copy \mathcal{L} of ω such that $\Pi_C \mathcal{L} \cong \omega + \eta.$

(Observe that $\eta \cong \boldsymbol{\sigma}(\{\mathbf{1}\})$.)

Goal: Compute $\mathcal{L} \cong \omega$ so as to make the non-standard points of $\Pi_C \mathcal{L}$ dense.

That is, compute \mathcal{L} so that if ψ and φ represent **non-standard** points of $\Pi_C \mathcal{L}$ with

$$[\psi] \prec_{\Pi_C \mathcal{L}} [\varphi],$$

then there is a θ with

$$[\psi] \prec_{\Pi_C \mathcal{L}} [\theta] \prec_{\Pi_C \mathcal{L}} [\varphi].$$

Observations and lemmas

If C is co-r.e. and φ is partial recursive, then there is a total recursive f with $f=_C \varphi.$

So every point $[\varphi] \in \Pi_C \mathcal{A}$ in a cohesive power by a **co-r.e.** cohesive set has a total representative $[f] = [\varphi]$.

Let \mathcal{L} be a computable linear order, and let C be cohesive.

If $\mathcal{L} \cong \omega$, then an $[\varphi] \in \prod_C \mathcal{L}$ is non-standard if and only if $\lim_{n \in C} \varphi(n) = \infty$.

Also, TFAE:

- $[\varphi]$ is the $\prec_{\Pi_C \mathcal{L}}$ -immediate successor of $[\psi]$.
- $\varphi(n)$ is the $\prec_{\mathcal{L}}$ -immediate successor of $\psi(n)$ for a.e. $n \in C$.
- $\varphi(n)$ is the $\prec_{\mathcal{L}}$ -immediate successor of $\psi(n)$ for infinitely many $n \in C$.

Unpacking the requirements

Fix a co-r.e. cohesive set C.

We want to compute a copy $\mathcal{L} = (L, \prec_{\mathcal{L}})$ of ω so that

 $[\varphi]$ is **not** the $\prec_{\Pi_C \mathcal{L}}$ -immediate successor of $[\psi]$

whenever $[\psi]$ and $[\varphi]$ are non-standard points of $\Pi_C \mathcal{L}$.

So we want to achieve

$$\psi(n) \downarrow \prec_{\mathcal{L}} \varphi(n) \downarrow \quad \Rightarrow \quad \exists k \in L \left[\psi(n) \prec_{\mathcal{L}} k \prec_{\mathcal{L}} \varphi(n) \right]$$

for a.e. $n \in C$ whenever $\lim_{n \in C} \psi(n) = \lim_{n \in C} \varphi(n) = \infty$. (It suffices to achieve this for total ψ and φ .)

However:

For every x we put in L, we must only put finitely many points $\prec_{\mathcal{L}}$ -below it!

Ugly pictures of what to avoid

Suppose we are building a linear order point-by-point.

Preparing to compute \mathcal{L}

Order all pairs $(\langle \psi_p, \varphi_p \rangle : p \in \mathbb{N})$ of partial recursive functions.

Main idea:

- Eventually we have to add a k between some $\psi_p(n)$ and $\varphi_p(n)$.
- Try to choose k to avoid $\psi_q(C)$ and $\varphi_q(C)$ for higher priority $\langle \psi_q, \varphi_q \rangle$.

Uniformly compute a sequence $(\langle A^{i,0}, A^{i,1} \rangle : i \in \mathbb{N})$ of pairs of sets such that

- $A^{i,0}$ and $A^{i,1}$ partition $\mathbb N$ into two parts;
- $\bigcap_{i < n} A^{i,\sigma(i)}$ is infinite for every n and every $\sigma \in \{0,1\}^n$.

Assign $\langle A^{2p,0}, A^{2p,1} \rangle$ to ψ_p and assign $\langle A^{2p+1,0}, A^{2p+1,1} \rangle$ to φ_p .

By cohesiveness, either $\psi_p(C) \subseteq^* A^{2p,0}$ or $\psi_p(C) \subseteq^* A^{2p,1}$. Try to learn which!

Similarly, either $\varphi_p(C) \subseteq^* A^{2p+1,0}$ or $\varphi_p(C) \subseteq^* A^{2p+1,1}$. Try to learn which!

Sketch of the algorithm

Fix a recursive enumeration $W_0 \subseteq W_1 \subseteq W_2 \subseteq \cdots$ of $W = \mathbb{N} \setminus C$.

At the start of stage s, we have $\prec_{\mathcal{L}}$ defined on a finite $X_{s-1} \supseteq \{0, \ldots, s-1\}$.

Start with $X_s = X_{s-1}$, and add more elements to X_s . If $s \notin X_s$, add it and make it $\prec_{\mathcal{L}}$ -maximum of what we have so far.

Consider each $\langle p, N \rangle < s$ in order.

Here N is a guess of where the cohesiveness of ψ_p and φ_p begin with respect to the partitions $\langle A^{2p,0}, A^{2p,1} \rangle$ and $\langle A^{2p+1,0}, A^{2p+1,1} \rangle$.

That is, we guess that either

$$\begin{split} \forall m \geq N & \left(m \in C \rightarrow \psi_p(m) \in A^{2p,0} \right) \\ \text{or} \\ \forall m \geq N & \left(m \in C \rightarrow \psi_p(m) \in A^{2p,1} \right) \end{split}$$

and similarly for φ_p .

Paul Shafer – Leeds

Sketch of the algorithm

For $\langle p,N\rangle$, think of an $(a,b,n)\in\{0,1\}\times\{0,1\}\times\{N,N+1,\ldots,s\}$ as guessing

- $\psi_p(m) \in A^{2p,a}$ for all $m \in C$ with $m \ge N$;
- $\varphi_p(m) \in A^{2p+1,b}$ for all $m \in C$ with $m \ge N$;
- $n \in C$.

For each $\langle p,N\rangle < s$, check for an (a,b,n) such that the following hold.

- For all $m \leq n$, $\psi_{p,s}(m) \downarrow$ and $\varphi_{p,s}(m) \downarrow$.
- Both $\psi_p(n) \in A^{2p,a}$ and $\varphi_p(n) \in A^{2p+1,b}$.
- For all m with $N \leq m \leq n$,
 - $\psi_p(m) \in A^{2p,1-a} \rightarrow m \in W_s$, and
 - $\varphi_p(m) \in A^{2p+1,1-b} \to m \in W_s.$
- Currently φ_p(n) is the ≺_L-immediate successor of ψ_p(n) in X_s.
- The element $\psi_p(n)$ is not $\leq_{\mathcal{L}}$ -below any of $0, 1, \dots, \langle p, N \rangle$.

If there is such an (a, b, n), then we need to act for $\langle p, N \rangle$.

Paul Shafer – Leed

Sketch of the algorithm

We found an (a, b, n), so we need to act for $\langle p, N \rangle$. Call (a, b) the action sides.

- Let r be greatest such that $\langle r, M \rangle \leq \langle p, N \rangle$ for some M.
- For each $q\leq r,$ let (a_q,b_q) be the most recently used action sides by any $\langle q,M\rangle\leq \langle p,N\rangle.$
- Choose the first k in the infinite set

$$\bigcap_{q \le r} \left(A^{2q,1-a_q} \cap A^{2q+1,1-b_q} \right) \setminus X_s.$$

Essentially, we are guessing that k is **not** in $\psi_q(C)$ or $\varphi_q(C)$ for any $q \leq r$.

• Add k to X_s and put it $\prec_{\mathcal{L}}$ -between $\psi_p(n)$ and $\varphi_p(n)$.

This does it!

- Can show that $\mathcal{L} \cong \omega$ because the actions of $\langle p, N \rangle$ eventually do not interfere with the actions of higher-priority $\langle q, M \rangle$.
- Can show that $[\varphi_p]$ is not the $\prec_{\Pi_C \mathcal{L}}$ -immediate successor of $[\psi_p]$ (if non-std).

More cohesive powers of computable copies of $\boldsymbol{\omega}$

For $k\geq 1,$ let ${\pmb k}$ denote the k-element linear order. Notice that ${\pmb k}\omega\cong\omega.$

Fix a co-r.e. cohesive set C.

Let \mathcal{L} be a computable copy of ω such that $\Pi_C \mathcal{L} \cong \omega + \eta$.

Then $\mathbf{k}\mathcal{L}\cong\omega$, and

$$\Pi_C(\mathbf{k}\mathcal{L}) \cong (\Pi_C \mathbf{k})(\Pi_C \mathcal{L}) \cong \mathbf{k}(\omega + \eta) \cong \mathbf{k}\omega + \mathbf{k}\eta \cong \omega + \mathbf{k}\eta.$$

So $1\mathcal{L}, 2\mathcal{L}, 3\mathcal{L}, \cdots$ are computable copies of ω giving rise to a sequence of pairwise **non-elementarily equivalent** cohesive powers:

 $\Pi_C(\mathbf{1}\mathcal{L}), \quad \Pi_C(\mathbf{2}\mathcal{L}), \quad \Pi_C(\mathbf{3}\mathcal{L}), \quad \dots$

If $k \neq m$, then $\Pi_C(\mathbf{k}\mathcal{L})$ satisfies the Σ_3 sentence "there is a block of size k," but $\Pi_C(\mathbf{m}\mathcal{L})$ does not.

Shuffling finite linear orders into cohesive powers of $\boldsymbol{\omega}$

Fix a co-r.e. cohesive set C.

Suppose we want a computable copy \mathcal{M} of ω with $\Pi_C \mathcal{M} \cong \omega + \sigma(\{2,3\})$.

Strategy:

Compute a copy \mathcal{L} of ω with $\Pi_C \mathcal{L} \cong \omega + \eta$ along with a coloring $F: \mathcal{L} \to \{0, 1\}$.

F induces a coloring $\widehat{F}: \Pi_C \mathcal{L} \to \{0, 1\}$ by

$$\widehat{F}([\varphi]) = \begin{cases} 0 & \text{if } F(\varphi(n)) = 0 \text{ for a.e. } n \in C \\ 1 & \text{if } F(\varphi(n)) = 1 \text{ for a.e. } n \in C. \end{cases}$$

Compute F so that colors 0 and 1 are dense in the **non-standard** part of $\Pi_C \mathcal{L}$.

To compute \mathcal{M} :

- Start with \mathcal{L} and its coloring F.
- Replace points in \mathcal{L} with color 0 by copies of 2.
- Replace points in \mathcal{L} with color 1 by copies of 3.

Then $\Pi_C \mathcal{M} \cong \omega + \boldsymbol{\sigma}(\{2,3\}).$

Inducing colorings of cohesive powers

More generally:

- Let C be cohesive, and let \mathcal{L} be a computable linear order.
- Let $F: \mathcal{L} \to \mathbb{N}$ be a computable coloring.

F induces a coloring \widehat{F} on $\Pi_C \mathcal{L}$ by

$$\widehat{F}([\varphi]) = \llbracket F \circ \varphi \rrbracket.$$

Colors are $=_C$ -equivalence classes of partial recursive functions $\delta \colon \mathbb{N} \to \mathbb{N}$. Write $\llbracket \delta \rrbracket$ for δ 's equivalence class when thinking of δ as a color.

A solid color is a color $\llbracket \delta \rrbracket$ where δ is constant. For example, $\llbracket 0 \rrbracket$ is a solid color.

A striped color is a color $\llbracket \delta \rrbracket$ that is not solid.

Shuffling finite collections of finite linear orders

We can induce a dense colorings of a cohesive powers.

Theorem (D H M Sh So V)

For every co-r.e. cohesive set C, there is a computable copy \mathcal{L} of ω and a computable $F \colon L \to \mathbb{N}$ such that

- $\Pi_C \mathcal{L} \cong \omega + \eta.$
- Every solid \widehat{F} -color occurs densely in the non-standard part of $\Pi_C \mathcal{L}$
- Between any two distinct non-standard points of $\Pi_C \mathcal{L}$, there is a point with a non-standard \widehat{F} -color.

We can shuffle finite collections of finite linear orders into a cohesive power.

Theorem (D H M Sh So V)

Let $0 < k_0 < k_1 < \cdots < k_n$. For every co-r.e. cohesive set C, there is a computable copy \mathcal{M} of ω such that

$$\Pi_C \mathcal{M} \cong \omega + \boldsymbol{\sigma}(\{\boldsymbol{k}_0, \boldsymbol{k}_1, \ldots, \boldsymbol{k}_n\}).$$

Shuffling infinite collections of finite linear orders

We can even shuffle infinite collections of finite linear orders.

Think of a set $X \subseteq \mathbb{N} \setminus \{0\}$ as a set of finite order-types.

Our most general result is the following:

Theorem (D H M Sh So V)

Let $X \subseteq \mathbb{N} \setminus \{0\}$ be either Σ_2^0 or Π_2^0 . Let C be a co-r.e. cohesive set. Then there is a computable copy \mathcal{M} of ω such that

$$\Pi_C \mathcal{M} \cong \omega + \boldsymbol{\sigma}(X \cup \{\omega + \zeta \eta + \omega^*\}).$$

The $\omega + \zeta \eta + \omega^*$ occurs naturally when shuffling infinitely many finite linear orders using the color-and-replace strategy.

This is because a cohesive product of all finite order-types has type $\omega + \zeta \eta + \omega^*$.

Further examples

Let ${\boldsymbol{C}}$ be cohesive. Observe that

 $\Pi_C \mathbb{Z} \cong \Pi_C(\mathbb{N}^* + \mathbb{N}) \cong (\Pi_C \mathbb{N})^* + \Pi_C \mathbb{N} \cong (\zeta \eta + \omega^*) + (\omega + \zeta \eta) \cong \zeta \eta.$

A cohesive power can be isomorphic to the original structure:

- $\Pi_C \mathbb{Q} \cong \eta$ (due to Łoś's theorem for cohesive powers)
- $\Pi_C \mathbb{Z} \mathbb{Q} \cong (\Pi_C \mathbb{Z})(\Pi_C \mathbb{Q}) \cong (\zeta \eta) \eta \cong \zeta \eta.$

We saw many examples of isomorphic linear orders having non-elementarily equivalent cohesive powers.

It is also possible for non-elementarily equivalent linear orders to have isomorphic cohesive powers:

- Let C be a co-r.e. cohesive set.
- Let \mathcal{L} be a computable copy of ω with $\Pi_C \mathcal{L} \cong \omega + \eta$.
- Then $\Pi_C(\mathcal{L} + \mathbb{Q}) \cong \Pi_C \mathcal{L} + \Pi_C \mathbb{Q} \cong (\omega + \eta) + \eta \cong \omega + \eta.$
- Thus $\mathcal{L} \not\equiv \mathcal{L} + \mathbb{Q}$, but $\Pi_C \mathcal{L} \cong \Pi_C(\mathcal{L} + \mathbb{Q})$.

Thank you for coming to my talk! Do you have a question about it?