Cohesive powers of linear orders

Paul Shafer University of Leeds <p.e.shafer@leeds.ac.uk> <http://www1.maths.leeds.ac.uk/~matpsh/>

Computability Theory Seminar MSRI Decidability, Definability and Computability in Number Theory October 30, 2020

h

Joint work with: R. Dimitrov, V. Harizanov, A. Morozov, A. Soskova, and S. Vatev

Paul Shafer – Leeds **[Cohesive powers of linear orders](#page-26-0)** Cohesive powers of linear orders Controllers Controller 30, 2020 1/27

Cohesive sets

Let

$$
\vec{A} = (A_0, A_1, A_2, \dots)
$$

be a countable sequence of subsets of N.

Then there is an **infinite** set $C \subseteq \mathbb{N}$ such that, for every *i*:

either $C \subseteq^* A_i$ or $C \subseteq^* \mathbb{N} \setminus A_i$.

C is called **cohesive** for \vec{A} , or simply \vec{A} -cohesive.

If \vec{A} is the sequence of recursive sets, then C is called r-cohesive. If \vec{A} is the sequence of r.e. sets, then C is called **cohesive**.

Skolem's countable non-standard model of true arithmetic

Skolem (1934):

Let C be cohesive for the sequence of arithmetical sets.

Consider arithmetical functions $f, g : \mathbb{N} \to \mathbb{N}$. Define:

$f = C \, g$	if	$C \subseteq^* \{n : f(n) = g(n)\}$
$f < g$	if	$C \subseteq^* \{n : f(n) < g(n)\}$
$(f + g)(n)$	=	$f(n) + g(n)$
$(f \times g)(n)$	=	$f(n) \times g(n)$

Let $[f] = \{g : g =_C f\}$ denote the $=_C$ -equivalence class of f.

Form a structure M with domain $\{[f] : f$ arithmetical} and

$$
[f] < [g] \text{ if } f < g; \qquad [f] + [g] = [f + g]; \qquad [f] \times [g] = [f \times g].
$$

Then M models true arithmetic!

- The standard elements of M are those represented by constant functions.
- The non-standard part of M is everything else. Note [id] is non-standard.

Effectivizing Skolem's construction

Tennenbaum wanted to know:

What if we did Skolem's construction, but

- used recursive functions $f: \mathbb{N} \to \mathbb{N}$ in place of arithmetical functions;
- only assumed that C is r-cohesive?

Do we still get models of true arithmetic?

Feferman-Scott-Tennenbaum (1959):

It is not even possible to get models of Peano arithmetic in this way.

Let $\Pi_C(\mathbb{N};<,+, \times)$ denote the **cohesive power** of the standard model of arithmetic by the $(r-)$ cohesive set C .

Theorem (Lerman 1970)

Let C and D be co-r.e. cohesive sets. Then $\Pi_C(\mathbb{N};<,+, \times)$ and $\Pi_D(\mathbb{N};<, +, \times)$ are elementarily equivalent if and only if $C \equiv_{\text{m}} D$.

Cohesive powers

Dimitrov (2009)

Let A be a computable structure.

- (i.e., A has domain N and recursive functions and relations.)
- Let C be cohesive. Form the cohesive power $\Pi_{C}A$ of A by C:

Consider partial recursive $\varphi, \psi : \mathbb{N} \to \mathbb{N}$ with $C \subset^* \text{dom}(\varphi)$. Define:

$$
\varphi =_C \psi \qquad \text{if} \qquad C \subseteq^* \{n : \varphi(n) = \psi(n)\} \nR(\psi_0, \dots, \psi_{k-1}) \qquad \text{if} \qquad C \subseteq^* \{n : R(\psi_0(n), \dots, \psi_{k-1}(n))\} \nF(\psi_0, \dots, \psi_{k-1})(n) \qquad = \qquad F(\psi_0(n), \dots, \psi_{k-1}(n))
$$

Let $[\varphi]$ denote the $=\overline{C}$ -equivalence class of φ .

Let $\Pi_C \mathcal{A}$ be the structure with domain $\{[\varphi] : C \subseteq^* \text{dom}(\varphi)\}\$ and $R([\psi_0], \ldots, [\psi_{k-1}])$ if $R(\psi_0, \ldots, \psi_{k-1})$ $F([\psi_0], \ldots, [\psi_{k-1}]) = [F(\psi_0, \ldots, \psi_{k-1})].$

A little A os

For cohesive powers:

- **1** Los's theorem holds for Σ_2 sentences and Π_2 sentences.
- 2 A one-way Los's theorem holds for Π_3 sentences.

('Sentence' means a sentence in the language of the structure under consideration.)

Theorem (Los's theorem for cohesive powers; Dimitrov) Let A be a computable structure, and let C be cohesive. Then

1 If θ is a Σ_2 sentence or a Π_2 sentence, then

 $\Pi_C \mathcal{A} \models \theta$ if and only if $\mathcal{A} \models \theta$.

2 If θ is a Π_3 sentence, then

$$
\Pi_C \mathcal{A} \models \theta \quad \text{implies} \quad \mathcal{A} \models \theta.
$$

A dual investigation to Lerman's

Lerman's investigation:

- Fix a computable presentation A of a computably-presentable structure.
- Vary the cohesive set C .
- See what structures $\Pi_C \mathcal{A}$ arise as cohesive powers.
- Result: For co-r.e. cohesive sets C and D, $\Pi_C(\mathbb{N};<,+, \times) \equiv \Pi_D(\mathbb{N};<,+, \times)$ if and only if $C \equiv_{m} D$.

Our investigation:

- Fix a co-r.e. cohesive set C .
- Fix a computably-presentable structure.
- Vary the computable presentation A of the structure.
- See what structures $\Pi_C \mathcal{A}$ arise as cohesive powers.

Moving the setting from arithmetic to linear orders

Lerman's structure is $(\mathbb{N};<,+, \times)$.

- Only one presentation of $(N; <, +, \times)$, up to recursive isomorphism.
- I do not know names for models of PA[−] (besides the standard one).
- I.e., you can say whether or not two cohesive powers $\Pi_C(\mathbb{N};<,+, \times)$ and $\Pi_D(N;<, +, \times)$ are the same, but it is hard to identify a cohesive power $\Pi_C(N; <, +, \times)$ as some previously-known structure.

We study *linear orders* instead of arithmetic.

- Lots of linear orders have names!
	- ω is the order-type of $(\mathbb{N}, <)$.
	- ζ is the order-type of $(\mathbb{Z}, <)$.
	- *n* is the order-type of $(0, <)$.
- Even more names: $\omega + \omega$ ω^* $\omega + \eta$ $\omega + \zeta \eta$ etc.
- The linear order ω has lots of computable presentations.

Cohesive powers of linear orders: Basic results

(D H M Sh So V)

Let $\mathcal L$ and $\mathcal M$ be computable linear orders, and let C be cohesive. Then:

- $\Pi_C(\mathcal{L} + \mathcal{M}) \cong \Pi_C \mathcal{L} + \Pi_C \mathcal{M}$
- $\Pi_C(\mathcal{LM}) \cong (\Pi_C \mathcal{L})(\Pi_C \mathcal{M})$
- $\Pi_C \mathcal{L}^* \cong (\Pi_C \mathcal{L})^*.$

Let $\mathbb{N} = (\mathbb{N}, <)$ denote the standard presentation of ω , and let C be cohesive. Then:

$$
\Pi_C \mathbb{N} \cong \omega + \zeta \eta.
$$

(Recall that $\omega + \zeta \eta$ is the order-type of countable non-standard models of PA.)

There is a computable copy $\mathcal L$ of ω that is **not** recursively isomorphic to the standard presentation such that for every cohesive set C :

$$
\Pi_C \mathcal{L} \,\cong\, \omega + \zeta \eta.
$$

Are there other cohesive powers of copies of ω ?

Question: Is it possible to achieve linear orders other than $\omega + \zeta \eta$ as cohesive powers of computable copies of ω ?

Previous slide: To make $\Pi_{C}\mathcal{L} \ncong \omega + \zeta \eta$, you would have to do more than make $\mathcal L$ not recursively isomorphic to the standard presentation of ω .

We show:

Theorem (D H M Sh So V)

For every co-r.e. cohesive set C, there is a computable copy $\mathcal L$ of ω such that $\Pi_{C} \mathcal{L} \cong \omega + \eta$.

Notice: The Π_3 sentence "every point has an immediate successor" is satisfied by ω but not by $ω + η$. So Los's theorem for cohesive powers is **optimal**.

More generally: We show that it is possible to achieve

 ω + various shuffles

as cohesive powers of computable copies of ω .

Shuffles, blocks, and condensations

Recall the shuffle $\sigma(X)$ of an at-most-countable collection X of linear orders:

- List X as $(\mathcal{L}_i : i < |X|)$.
- Paint $\mathbb O$ with $|X|$ many colors so that each color occurs densely.
- Replace each point in $\mathbb Q$ of color i with a copy of $\mathcal L_i.$

For example, $\sigma({2,3})$ consists of dense copies of 2 and dense copies of 3.

Let $\mathcal{L} = (L, \prec_L)$ be a linear order.

• The finite condensation $c_F(x)$ of an $x \in L$ is

 $\mathbf{c}_F(x) = \{y \in L : \text{there are only finitely many points between } x \text{ and } y\}.$

- Also call $c_F(x)$ a block of L. Blocks are maximal discrete intervals.
- The finite condensation of $c_F(\mathcal{L})$ of \mathcal{L} is

$$
\mathbf{c}_{\mathbf{F}}(\mathcal{L}) = \{ \mathbf{c}_{\mathbf{F}}(x) : x \in L \}.
$$

For example, $\mathbf{c}_{\mathrm{F}}(\boldsymbol{\sigma}(\{2,3\})) \cong \eta$.

A few more facts about cohesive powers of linear orders

A computable linear order L canonically embeds into its cohesive powers $\Pi_C \mathcal{L}$ by $x \mapsto$ [the constant function with value x].

Let $\mathcal L$ be a computable copy of ω , and let C be a cohesive set.

- The range of the canonical embedding is an initial segment of $\Pi_{\alpha}\mathcal{L}$.
- So $\Pi_{C} \mathcal{L} \cong \omega + \mathcal{M}$ for some linear order \mathcal{M} .
- Call the ω -part of $\Pi_{C} \mathcal{L}$ the standard part.
- Call the M-part of $\Pi_C \mathcal{L}$ the non-standard part. Note $[\mathrm{id}] \in \mathcal{M}$.

Theorem (D H M Sh So V)

Let $\mathcal L$ be a computable linear order, and let C be a co-r.e. cohesive set.

- The condensation $\mathbf{c}_F(\Pi_C \mathcal{L})$ is dense.
- If $\mathcal{L} \cong \omega$, then $\mathbf{c}_F(\Pi_C \mathcal{L}) \cong \mathbf{1} + \eta$.

Upshot: Aim to make $\Pi_{\mathcal{C}} \mathcal{L} \cong \omega + a$ shuffle of discrete linear orders.

Achieving $\Pi_{C}\mathcal{L} \cong \omega + \eta$

Theorem (D H M Sh So V)

For every co-r.e. cohesive set C, there is a computable copy $\mathcal L$ of ω such that $\Pi_{C} \mathcal{L} \cong \omega + n.$

(Observe that $\eta \cong \sigma({1}).$)

Goal: Compute $\mathcal{L} \cong \omega$ so as to make the non-standard points of $\Pi_{\alpha}\mathcal{L}$ dense.

That is, compute L so that if ψ and φ represent **non-standard** points of $\Pi_{\mathcal{C}}\mathcal{L}$ with

$$
[\psi]\prec_{\Pi_C\mathcal{L}}[\varphi],
$$

then there is a θ with

$$
[\psi] \prec_{\Pi_C C} [\theta] \prec_{\Pi_C C} [\varphi].
$$

Observations and lemmas

If C is co-r.e. and φ is partial recursive, then there is a total recursive f with $f=_C\varphi$.

So every point $[\varphi] \in \Pi_C \mathcal{A}$ in a cohesive power by a co-r.e. cohesive set has a total representative $[f] = [\varphi]$.

Let $\mathcal L$ be a computable linear order, and let C be cohesive.

If $\mathcal{L} \cong \omega$, then an $[\varphi] \in \Pi_C \mathcal{L}$ is non-standard if and only if $\lim_{n \in C} \varphi(n) = \infty$.

Also, TFAE:

- $[\varphi]$ is the $\prec_{\Pi_{\mathcal{C}} \mathcal{L}}$ -immediate successor of $[\psi]$.
- $\varphi(n)$ is the $\prec_{\mathcal{L}}$ -immediate successor of $\psi(n)$ for a.e. $n \in \mathbb{C}$.
- $\varphi(n)$ is the \prec_C -immediate successor of $\psi(n)$ for infinitely many $n \in C$.

Unpacking the requirements

Fix a co-r.e. cohesive set C .

We want to compute a copy $\mathcal{L} = (L, \prec_{\mathcal{L}})$ of ω so that

 $[\varphi]$ is **not** the $\prec_{\Pi \cap \mathcal{L}}$ -immediate successor of $[\psi]$

whenever $[\psi]$ and $[\varphi]$ are non-standard points of $\Pi_C \mathcal{L}$.

So we want to achieve

$$
\psi(n)\downarrow \prec_{\mathcal{L}} \varphi(n)\downarrow \quad \Rightarrow \quad \exists k \in L \, [\psi(n) \prec_{\mathcal{L}} k \prec_{\mathcal{L}} \varphi(n)]
$$

for a.e. $n \in C$ whenever $\lim_{n \in C} \psi(n) = \lim_{n \in C} \varphi(n) = \infty$. (It suffices to achieve this for total ψ and φ .)

However:

For every x we put in L, we must only put finitely many points $\prec_{\mathcal{L}}$ -below it!

Ugly pictures of what to avoid

Suppose we are building a linear order point-by-point.

Preparing to compute \mathcal{L}

Order all pairs $(\langle \psi_p, \varphi_p \rangle : p \in \mathbb{N})$ of partial recursive functions.

Main idea:

- Eventually we have to add a k between some $\psi_n(n)$ and $\varphi_n(n)$.
- Try to choose k to avoid $\psi_q(C)$ and $\varphi_q(C)$ for higher priority $\langle \psi_q, \varphi_q \rangle$.

Uniformly compute a sequence $(\langle A^{i,0}, A^{i,1}\rangle : i \in \mathbb{N})$ of pairs of sets such that

- $A^{i,0}$ and $A^{i,1}$ partition $\mathbb N$ into two parts;
- \bullet $\bigcap_{i < n} A^{i, \sigma(i)}$ is infinite for every n and every $\sigma \in \{0,1\}^n$.

Assign $\langle A^{2p,0},A^{2p,1}\rangle$ to ψ_p and assign $\langle A^{2p+1,0},A^{2p+1,1}\rangle$ to $\varphi_p.$

By cohesiveness, either $\psi_p(C) \subseteq^* A^{2p,0}$ or $\psi_p(C) \subseteq^* A^{2p,1}$. Try to learn which!

Similarly, either $\varphi_p(C) \subseteq^* A^{2p+1,0}$ or $\varphi_p(C) \subseteq^* A^{2p+1,1}.$ Try to learn which!

Sketch of the algorithm

Fix a recursive enumeration $W_0 \subseteq W_1 \subseteq W_2 \subseteq \cdots$ of $W = \mathbb{N} \setminus C$.

At the start of stage s, we have $\prec_{\mathcal{L}}$ defined on a finite $X_{s-1} \supseteq \{0,\ldots,s-1\}.$

Start with $X_s = X_{s-1}$, and add more elements to X_s . If $s \notin X_s$, add it and make it $\prec_{\mathcal{L}}$ -maximum of what we have so far.

Consider each $\langle p, N \rangle < s$ in order.

Here N is a guess of where the cohesiveness of ψ_p and φ_p begin with respect to the partitions $\langle A^{2p,0}, A^{2p,1}\rangle$ and $\langle A^{2p+1,0}, A^{2p+1,1}\rangle$.

That is, we guess that either

$$
\forall m \ge N \ (m \in C \to \psi_p(m) \in A^{2p,0})
$$

or

$$
\forall m \ge N \ (m \in C \to \psi_p(m) \in A^{2p,1})
$$

and similarly for φ_n .

Sketch of the algorithm

For $\langle p, N \rangle$, think of an $(a, b, n) \in \{0, 1\} \times \{0, 1\} \times \{N, N + 1, \ldots, s\}$ as guessing

- $\psi_n(m) \in A^{2p,a}$ for all $m \in C$ with $m \geq N$;
- $\varphi_n(m) \in A^{2p+1,b}$ for all $m \in C$ with $m \geq N$;
- \bullet $n \in C$.

For each $\langle p, N \rangle < s$, check for an (a, b, n) such that the following hold.

- For all $m \leq n$, $\psi_{p,s}(m) \downarrow$ and $\varphi_{p,s}(m) \downarrow$.
- Both $\psi_p(n) \in A^{2p,a}$ and $\varphi_p(n) \in A^{2p+1,b}$.
- For all m with $N \le m \le n$.
	- $\quad \quad \Phi_p(m) \in A^{2p,1-a} \ \rightarrow \ m \in W_s$, and
	- $\varphi_p(m) \in A^{2p+1,1-b} \to m \in W_s$.
- Currently $\varphi_p(n)$ is the $\prec_{\mathcal{L}}$ -immediate successor of $\psi_p(n)$ in X_s .
- The element $\psi_p(n)$ is not $\preceq_{\mathcal{L}}$ -below any of $0, 1, \ldots, \langle p, N \rangle$.

If there is such an (a, b, n) , then we need to act for $\langle p, N \rangle$.

Sketch of the algorithm

We found an (a, b, n) , so we need to act for $\langle p, N \rangle$. Call (a, b) the action sides.

- Let r be greatest such that $\langle r, M \rangle \leq \langle p, N \rangle$ for some M.
- For each $q \leq r$, let (a_q, b_q) be the most recently used action sides by any $\langle q, M \rangle \leq \langle p, N \rangle$.
- Choose the first k in the infinite set

$$
\bigcap_{q\leq r} \left(A^{2q,1-a_q}\cap A^{2q+1,1-b_q}\right)\setminus X_s.
$$

Essentially, we are guessing that k is not in $\psi_q(C)$ or $\varphi_q(C)$ for any $q \leq r$.

• Add k to X_s and put it $\prec_{\mathcal{L}}$ -between $\psi_n(n)$ and $\varphi_n(n)$.

This does it!

- Can show that $\mathcal{L} \cong \omega$ because the actions of $\langle p, N \rangle$ eventually do not interfere with the actions of higher-priority $\langle q, M \rangle$.
- Can show that $[\varphi_p]$ is not the $\prec_{\Pi_C} \mathcal{L}$ -immediate successor of $[\psi_p]$ (if non-std).

More cohesive powers of computable copies of ω

For $k \geq 1$, let k denote the k-element linear order. Notice that $k\omega \cong \omega$.

Fix a co-r.e. cohesive set C .

Let L be a computable copy of ω such that $\Pi_{C} \mathcal{L} \cong \omega + \eta$.

Then $k\mathcal{L} \cong \omega$, and

$$
\Pi_C(\mathbf{k} \mathcal{L}) \,\,\cong\,\, (\Pi_C \mathbf{k}) (\Pi_C \mathcal{L}) \,\,\cong\,\, \mathbf{k}(\omega + \eta) \,\,\cong\,\, \mathbf{k} \omega + \mathbf{k} \eta \,\,\cong\,\, \omega + \mathbf{k} \eta.
$$

So $1 \mathcal{L}, 2 \mathcal{L}, 3 \mathcal{L}, \cdots$ are computable copies of ω giving rise to a sequence of pairwise non-elementarily equivalent cohesive powers:

 $\Pi_C(\mathbf{1}\mathcal{L}), \quad \Pi_C(\mathbf{2}\mathcal{L}), \quad \Pi_C(\mathbf{3}\mathcal{L}), \quad \dots$

If $k \neq m$, then $\Pi_C (k\mathcal{L})$ satisfies the Σ_3 sentence "there is a block of size k," but Π_C (mL) does not.

Shuffling finite linear orders into cohesive powers of ω

Fix a co-r.e. cohesive set C .

Suppose we want a computable copy M of ω with $\Pi_{C}M \cong \omega + \sigma({2,3})$.

Strategy:

Compute a copy L of ω with $\Pi_C \mathcal{L} \cong \omega + \eta$ along with a coloring $F: \mathcal{L} \to \{0, 1\}.$

F induces a coloring $\widehat{F} : \Pi_C \mathcal{L} \to \{0, 1\}$ by

$$
\widehat{F}([\varphi]) = \begin{cases} 0 & \text{if } F(\varphi(n)) = 0 \text{ for a.e. } n \in C \\ 1 & \text{if } F(\varphi(n)) = 1 \text{ for a.e. } n \in C. \end{cases}
$$

Compute F so that colors 0 and 1 are dense in the **non-standard** part of $\Pi_{\alpha}\mathcal{L}$.

To compute \mathcal{M} :

- Start with $\mathcal L$ and its coloring F .
- Replace points in $\mathcal L$ with color 0 by copies of 2.
- Replace points in $\mathcal L$ with color 1 by copies of 3.

Then $\Pi_C \mathcal{M} \cong \omega + \sigma({2,3}).$

Inducing colorings of cohesive powers

More generally:

- Let C be cohesive, and let $\mathcal L$ be a computable linear order.
- Let $F: \mathcal{L} \to \mathbb{N}$ be a computable coloring.

F induces a coloring \widehat{F} on $\Pi_C \mathcal{L}$ by

$$
\widehat{F}([\varphi]) = [F \circ \varphi].
$$

Colors are $=_C$ -equivalence classes of partial recursive functions $\delta \colon \mathbb{N} \to \mathbb{N}$. Write $\llbracket \delta \rrbracket$ for δ 's equivalence class when thinking of δ as a color.

A solid color is a color $\|\delta\|$ where δ is constant. For example, $\|0\|$ is a solid color.

A striped color is a color $\|\delta\|$ that is not solid.

Shuffling finite collections of finite linear orders

We can induce a dense colorings of a cohesive powers.

Theorem (D H M Sh So V)

For every co-r.e. cohesive set C, there is a computable copy $\mathcal L$ of ω and a computable $F: L \to \mathbb{N}$ such that

- Π c $\mathcal{L} \cong \omega + \eta$.
- Every solid \widehat{F} -color occurs densely in the non-standard part of $\Pi_C \mathcal{L}$
- Between any two distinct non-standard points of $\Pi_{C} \mathcal{L}$, there is a point with a non-standard \widehat{F} -color.

We can shuffle finite collections of finite linear orders into a cohesive power.

Theorem (D H M Sh So V)

Let $0 < k_0 < k_1 < \cdots < k_n$. For every co-r.e. cohesive set C, there is a computable copy M of ω such that

$$
\Pi_C \mathcal{M} \,\,\cong\,\,\omega + \boldsymbol{\sigma}(\{\boldsymbol{k}_0,\boldsymbol{k}_1,\ldots,\boldsymbol{k}_n\}).
$$

Shuffling infinite collections of finite linear orders

We can even shuffle infinite collections of finite linear orders.

Think of a set $X \subseteq \mathbb{N} \setminus \{0\}$ as a set of finite order-types.

Our most general result is the following:

Theorem (D H M Sh So V)

Let $X\subseteq \mathbb{N}\setminus\{0\}$ be either Σ^0_2 or $\Pi^0_2.$ Let C be a co-r.e. cohesive set. Then there is a computable copy M of ω such that

$$
\Pi_C \mathcal{M} \cong \omega + \sigma(X \cup {\omega + \zeta\eta + \omega^*}).
$$

The $\omega + \zeta \eta + \omega^*$ occurs naturally when shuffling infinitely many finite linear orders using the color-and-replace strategy.

This is because a cohesive product of all finite order-types has type $\omega + \zeta \eta + \omega^*$.

Further examples

Let C be cohesive. Observe that

 $\Pi_C \mathbb{Z} \cong \Pi_C (\mathbb{N}^* + \mathbb{N}) \cong (\Pi_C \mathbb{N})^* + \Pi_C \mathbb{N} \cong (\zeta \eta + \omega^*) + (\omega + \zeta \eta) \cong \zeta \eta.$

A cohesive power can be isomorphic to the original structure:

- $\Pi_C \mathbb{O} \cong \eta$ (due to Łoś's theorem for cohesive powers)
- $\Pi_C \mathbb{Z} \mathbb{Q} \cong (\Pi_C \mathbb{Z}) (\Pi_C \mathbb{Q}) \cong (\zeta \eta) \eta \cong \zeta \eta$.

We saw many examples of isomorphic linear orders having non-elementarily equivalent cohesive powers.

It is also possible for non-elementarily equivalent linear orders to have isomorphic cohesive powers:

- Let C be a co-r.e. cohesive set.
- Let L be a computable copy of ω with $\Pi_{C} \mathcal{L} \cong \omega + \eta$.
- Then $\Pi_C(\mathcal{L} + \mathbb{Q}) \cong \Pi_C \mathcal{L} + \Pi_C \mathbb{Q} \cong (\omega + \eta) + \eta \cong \omega + \eta$.
- Thus $\mathcal{L} \not\equiv \mathcal{L} + \mathbb{Q}$, but $\Pi_C \mathcal{L} \cong \Pi_C (\mathcal{L} + \mathbb{Q})$.

Thank you for coming to my talk! Do you have a question about it?