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Some Applications of Milliken’s Tree Theorem

The structures, countable discrete set, the rationals, and the
Rado graph, have finite big Ramsey degree. For all of these
structures, Milliken’s Tree Theorem can be used to prove this.
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Coloring Structures

• Let B be an infinite structure and A is any finite
substructure of B.
• (BA) are copies of A in B.
• For ` ≤ k, the notation

B → (B)Ak,`

means that for every coloring f : (BA)→ k there exists an
isomorphic substructure B′ of B such that |f−1(B

′

A)| ≤ `.
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Countable Discrete Set
Examples of B and A

ω is the infinite but countable set. No language. The finite
substructures are finite sets of size n. Color sets of size n.
Ramsey’s Theorem is the statement that, for all n, for all k,
ω → (ω)n

k,1.
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The Rationals
Examples of B and A

Q is the rationals with the ordering <Q. A finite substructure is
just a linear ordered set of size n. Color sets of linear ordered
(under <Q) sets of size n.
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The Rado Graph
Examples of B and A

R = (N, E) will be the Rado graph. For every two disjoint
finite sets of vertices F0, F1 ⊆N, there exists x ∈N such that
xEy, for all y ∈ F0, and ¬xEy, for all y ∈ F1. E is included in the
language. Any finite graph G is a substructure ofR. Color
copies of G. (Normally we use V not N.)
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Examples of B and A

All these infinite structures are computable and computably
categorical. Also we will use the binary branching tree 2<ω for
Miliken Tree Theorem.
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Finite Big Ramsey Degree

• For a finite substructure A of B, the big Ramsey degree of A
in B is the least number ` ∈ ω, if it exists, such that
B → (B)Ak,` for all k ∈ ω, in which case we say that the big
Ramsey degree of A is finite.
• We say that a structure B has finite big Ramsey degrees if, for

every finite substructure A of B has finite big Ramsey
degree.

All 3 of our examples have finite big Ramsey degree.
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`A

Theorem
There is a copy of B such that, for all A, there is a `A and computable
coloring, C`A , of B with `A colors such that
• (Existence) B → (B)Ak,`A

.
• (Tightness) In all the copies B′ of B, for all j ≤ `A, there is a

copy of A with color j from C`A appearing.

Milliken’s Tree Theorem is used to show `A exists. Tightness is
related to the (model theoretic) types of A coded into a yet to
be determined superstructure of B allowing for a larger
language. A color for each type. We will later discuss how
these copies of A and the types or colors of A occur within B′.

For ω, `n = 1 for all n. The superstructure is just ω.
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When A is a singleton

Here we are just coloring the domain. B′ can be created as the
limit of finite substructures B′s of B. Run the greedy algorithm
to find a B′s+1 for all colors. It that fails we get a copy of B with
fewer colors. Repeat till it works or we are down to a single
color. So nonuniformly computable. Hence provable in RCA0.
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Coding the halting set, K, into ω → (ω)3
2,1

Carl Jockusch’s Coding

Let CJ(x, s, t) be RED iff x < s < t and Ks � x = Kt � x.

Assume H ⊆ ω is infinite and |C−1
J (H)| = 1. Pick z. Find a large

x > z in H. There is a large s > x in H such that Ks � x = K � x.
There is a large t > s in H. So this triple is colored RED.

If the triple {x, s, t} is a substructure of H then there is a large t′,
a large s′′, and a large t′′ such that {x, s, t′} and {x, s′′, t′′} are
substructures of H. The triple largely extendable in H. The new
triples are large companions of the original triple.

Hence all triples in H are colored RED and
Ks(z) = Kt(z) = K(z).
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Largely Extendable

• All our structures are computable. Hence there is a
one-to-one computable enumeration of the domains. Say
di for i ∈N. Sometimes we need these enumerations to
have some special properties related to the structure.
• We say di in the domain of A is large if i is large.
• When A has size 3, we can use this notion of large to

define when a copy A in B′ is largely extendable and large
companions.

Theorem (Largeness)
For all our B, for all our A, each appearance of A in B′ is largely
extendable. Moreover, we can find large companions with the same
color as our copy of A w.r.t. C`A .
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Coding K when A has size 3

C`A is a computable coloring witnesses that all `A colors must
be realized by some copy of A in any copy B′ of B inside B.
Each of these copies of A is largely extendable preserving the
color.

Use the product coloring, C`A × CJ and repeat Jockusch’s proof
for any color j ≤ `A.
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Q and sets of size 2

Code Q into 2<ω by qσ = ∑i≤|σ|(σ(i)− 1
2 )2
−i. <Q is clear in this

setting. Let C(σ, τ) be 1 when |σ| < |τ| iff qσ < qτ. Any
subcopy of Q in our fixed copy must have pairs {σ, τ} colored
0 and 1 with large gaps between |σ| and |τ|. This a precursor to
the coloring C`2 for Q.
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A Sketch of these Types

The tree structure gives us the meet, σ ∧ τ, of σ and τ. The type
of pair {σ, τ}must include the pair, the color of the pair, and
the meet of the pair. These are just partial types.
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Pairs inside an Extension of Q

We will consider the structure Q∗ = (2<ω,<Q,∧). Let U be a
subset of 2<ω such that (U,<Q) is a copy of Q. Let U∧ be the
meet closure of U. Let U ∗ = (U∧,<Q,∧). Fixed an enumeration
e of 2<ω such that if |e(i)| < |e(j)| then i < j.

Theorem (Selective Largeness)
For all z, we can computably find an copy of {σ ∧ τ, σ, τ}, where
|σ| < |τ| iff qσ < qτ (so the pair {σ, τ} is colored 1), and
|σ ∧ τ| > z, in U ∗ which is largely extendable. Moreover, there are
large companions with the same color. Similarly for {σ ∧ τ, σ, τ},
where is not the case that |σ| < |τ| iff qσ < qτ (so the pair σ, τ is
colored 0),
The proof makes several critical uses of the fact that (U,<Q) is
a copy of Q.

Let CJ(σ, τ) = CJ(σ ∧ τ, σ, τ). We can show the product
coloring codes K.
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When |A| ≥N 3 or B = Q

Assume that Miliken Tree Theorem implies the existence of `A.
Then, as we unlikely recall from the Dzhafarov’s talk, Miliken
Tree Theorem follows from ACA, arithmetic comprehension,
over RCA0. So everything here is equivalent to ACA over RCA0.
We explore these equivalencies more finely in the paper. There
are many results and many open questions.
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R → (R)K2
k,2

Take a coloring of all copies of K2 inR. Fix C not computable.
Then there is a subcopyR′ ofR where the copies of K2 need
just 2 colors andR′ does not compute C. This is cone avoidance
and done via forcing. So weaker than ACA0.

We need to explore why K2 inR is different from 2 in Q.

It is partially open how the statementR → (R)K2
k,2 is related to

other statements weaker than ACA. A number of results appear
in our paper.
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Strong subtrees
Definition
A tree is a subset T of ω<ω as follows:
• there exists a root ρ ∈ T such that ρ � σ for all σ ∈ T;
• if σ, τ ∈ T then also σ ∧ τ ∈ T;
• every σ ∈ T there are finitely many τ ∈ T such that σ ≺ τ

and there is no τ′ such that σ ≺ τ′ ≺ τ.

Definition
For each n ∈N, let T(n) = {σ ∈ T : |τ ∈ T : τ ≺ σ| = n} and
height(T) = sup{n + 1 ∈N : T(n) 6= ∅}.

Definition
Let U ⊆ T be trees. U is a strong subtree of T if there is a level
function f : height(U)→ T such that for all n < height(U), if
σ ∈ U(n) then σ ∈ T(f (n)). A node σ ∈ U is k-branching in U if
and only if it is k-branching in T.
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Examples of subtrees, strong and not strong

01

010 011

0100
0101 0110

0111

S0
01

010 011

0100
0101 0110

0111

S1

01

010 011

0100
0101 0110

0111

S2
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Examples of subtrees, strong and not strong

...

f (0)

f (0) + 1

f (1)

f (1) + 1

f (2)
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Miliken’s tree theorem

Definition
Given a tree T, let Sα(T) denote the class of all subtrees of T of
height α ≤ ω.

Theorem (Milliken’s tree theorem 1979)
Let T be an infinite tree with no leaves. For all n, k ≥ 1 and all
c : Sn(T)→ k there is a U ∈ Sω(T) such that c is contant on Sn(U).
If we color T by levels we get Ramsey’s Theorem. We will use
T = 2<ω.
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Revisiting `2 for Q
How do these partial types embed into S3(2<ω)?

We coded Q into 2<ω by qσ = ∑i≤|σ|(σ(i)− 1
2 )2
−i. Let C(σ, τ)

be 1 when |σ| < |τ| iff qσ < qτ. Must include the meet.
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Coding Q to have just 2 embeddings

We want to code Q by a set of the nodes U such that U is
antichain; every node in U∧, the meet closure of U, has a
unique length; U∧ −U is effective isomorphic via g to 2<ω; and,
for all σ ∈ U, for all τ, if |τ| > |σ|, σ(|τ|) = 0 (the passing
number of τ by σ is 0). Each leaf in U codes a rational as above.
Within U, < Q is just <L. Nodes in U∧ −U will be called meets.
Now pairs of leaves have exactly one of two types, one of each
color, 0 or 1.

By the above we know these types appear in every subcopy of
U which is a dense linear order under <L without end points.
So we have tightness.
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Using Miliken’s Tree Theorem

Using all this we can create an effective isomorphism h from
2<ω to U such that: the image of a strong subcopy of 2<ω is a
subcopy of Q; the preimage of every pair of leaves is embedded
in a unique copy of S3(2<ω); and the image of every copy of
S3(2<ω) contains exactly one pair of leaves of each type. The
preimage of colorings of a type result in a coloring of S3(2<ω).
Now use Miliken’s Tree Theorem. Take the image of the result.
Repeat for the other type.
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Joyce Trees and `n for the Rationals

The closure of n leaves under meets inside U∧ forms a Joyce tree
of size n. The number of nonisomorphic trees is nth odd
tangent number. All have 2n− 1 nodes.

We can show these types appear in every subcopy of U which is
a dense linear order under <L without end points. (Tightness)

This gives us `n for the rationals.
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An Order Definable from the Rado Graph

LetR = (V, E) be a computable Rado graph. For i < j, let
σj(i) = 1 iff there is an edge from j to i and 0 otherwise. Thus
|σj| = j. Define i <R j iff σi <L σj. Call (V, E,<R) the Joyce Rado
Graph. (V,<R) is a copy of Q.

Theorem (ACA)
Let (V′, E) be a subcopy of the Rado Graph insideR then there is
subcopy (V′′, E) of the Rado graph inside (V′, E) where (V′′, E,<R)
is isomorphic to (V, E,<R).
For finite substructures A of the ordered Rado Graph, the `A
for the Rado graph and for the ordered Rado graph are the
same.
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`A for the Joyce Rado Graph

The collection of all σi is effectively isomorphic to 2<ω under
<L. Whether there is an edge between j and i is determined by
the passing number of σi by σj. We can code this, like Q, by
antichain U. But we have to remove the restriction there on the
passing number. Let c(σ) be this coding.

For the completely (dis)connected graph of size n, everything
works like for subset of set n in the rationals. The passing
number is constant.

If the meet of c(σ) and c(τ) is longer than c(ρ) then the passing
number of c(σ) and c(τ) by c(ρ) agreed. Hence a finite graph G
limits the number of Joyce trees which can code G. But they can
be counted and appear in every subcopy of a Joyce Rado
Graph.
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R → (R)K2
k,2 , Again

How we code K2 forR is exactly how we code a pair for Q. But
the first satisfies cone avoidance and the second codes K.

Any subcopy of the rationals is a copy of Q w.r.t. to original
ordering. We needed this fact for selective largeness and hence
to code K. With a Rado graph we can defined an ordering <R
which gives us copy of Q. Any subcopy of a Rado graph
contains a copy of Q w.r.t. <R, possibly properly. That provides
enough room for cone avoidance for A of size 2. Using ACA we
can find a subordering which is a copy of Q w.r.t. <R.
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Thanks!
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