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Classification problem in classes of structures

There is a body of work in mathematical logic dealing with comparing the
complexity of the classification problem for various classes of structures.

(Model Theory) By looking at the cardinality of the set of
isomorphism types, we know that the classification problem for the
class of countable linear orderings (2ℵ0 many isomorphism types)
must be more complicated than the classification problem for the
class of Q-vector spaces (ℵ0 many isomorphism types)

(Descriptive Set Theory) Using Borel embeddings and the ≤B partial
ordering induced by the embeddings, we can make distinctions among
classes with 2ℵ0 many isomorphism types. For instance, we know that
the class of Abelian p-groups of length ω lies strictly below the class
of countable linear orderings in the ≤B partial ordering.
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Coding and decoding in classes of structures

There are familiar ways of coding one structure in another, and for
coding members of one class of structures in those of another class.

Sometimes the coding is effective.

Assuming this, it is interesting when there is effective decoding, and
and it is also interesting when decoding is very difficult.

We consider some formal notions that describe coding and decoding, and
test the notions in some examples.
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Conventions

1 Languages L are computable.

2 Structures have universe ω.

3 We may identify the structure A with D(A).

4 Classes K are closed under isomorphism.

5 We suppose that K is axiomatized by an Lω1ω sentence of L.
(By a result of López-Escobar, this is the same as assuming that K is
a Borel subclass of Mod(L) closed under isomorphism.)
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Borel embedding

Definition (Friedman, Stanley, 1989)

We say that a class K of structures is Borel embeddable in a class of
structures K′, and we write K ≤B K′, if there is a Borel function
Φ : K → K ′ such that for A,B ∈ K , A ∼= B iff Φ(A) ∼= Φ(B).

The notion of Borel embedding gives a partial ordering ≤B . If any class of
structures could be Borel embedded in a class K we say that K is on the
top of ≤B .

Note: We could have a uniform Borel procedure for coding structures from
structures of class K in structures from K′. As we shall see, there may or
may not be a Borel decoding procedure.
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On top under ≤B

Theorem

The following classes lie on top under ≤B .

1 undirected graphs (Lavrov,1963; Nies, 1996; Marker, 2002)

2 fields of any fixed characteristic (Friedman-Stanley;
R. Miller-Poonen-Schoutens-Shlapentokh, 2018)

3 2-step nilpotent groups (Mekler, 1981; Mal’tsev, 1949)

4 linear orderings (Friedman-Stanley)

5 Boolean algebras (Carmelo-Gao, 2001)

Friedman and Stanley: if a class is on top, then its isomorphism problem
must be Σ1

1-complete. Ex. Torsion abelian groups are an interesting class:
their isomorphism problem is Σ1

1 -complete, but they are not on top for
Borel reducibility. If torsion-free abelian groups are on top was stated as
an open question then and remains so.
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Graphs ≤B Fields

Example

Let F ∗ be an algebraically closed field with transcendence basis
b0, b1, b2, . . ..
For a graph G , let F (G ) be the subfield generated by the following:

1 bi , for i ∈ G ,

2 elements of acl(bi ),

3
√

d + d ′, where for some i , j joined by an edge in G , d is
inter-algebraic with bi and d ′ is inter-algebraic with bj .

The formulas that define the interpretation are computable Σ3 or simpler.
Hence, for any F ∼= F (G ), we get a copy of G computable in F ′′.
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Computable and Turing computable embeddings

Calvert - Cummins - Knight -S. Miller, 2004:

Definition

We say that a class K is Turing computably embedded in a class K′, and
we write K ≤tc K′, if there is a Turing operator Φ : K → K′ such that for
all A,B ∈ K, A ∼= B iff Φ(A) ∼= Φ(B).

Definition

We say that a class K is computably embedded in a class K′, and we write
K ≤c K′, if there is an enumeration operator Ψ : K → K′ such that for all
A,B ∈ K, A ∼= B iff Ψ(A) ∼= Ψ(B).
Here Ψ(A) = {ϕ | (∃α ⊆ D(A))(α,ϕ) ∈W }, for some some c.e. W .

The notions of Turing computable embedding and the computable
embedding capture in a precise way the idea of uniform effective coding.
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Properties of ≤tc and ≤c

Proposition

Let K ≤c K′ by an enumeration operator Ψ. If A ⊆ B ∈ K, then
Ψ(A) ⊆ Ψ(B).

For the class of prime fields PF and finite linear orderings FLO we have
PF ≤c FLO, but FLO 6≤c PF .
For the class of Q-vector spaces VS and linear orderings LO we have
VS ≤tc LO, but LO 6≤tc VS .

Theorem (Pull Back theorem, Knight, S. Miller, Boom, 2007)

Let K ≤tc K′ by Turing operator Φ. Fore every computable infinitary
formula ϕ of the language of K′ there is a computable infinitary formula
ϕ∗ of the language of K of the same complexity, such that for all A,∈ K
A |= ϕ∗ ⇐⇒ Φ(A) |= ϕ.

Proposition (Kalimullin, Greenberg)

K ≤c K′ ⇒ K ≤tc K′. (The converse fails - {1, 2} ≤tc {ω, ω∗})
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On top under ≤tc

Theorem

The following classes lie on top under ≤tc .

1 undirected graphs

2 fields of any fixed characteristic

3 2-step nilpotent groups

4 linear orderings

The Borel embeddings of Friedman and Stanley, R. Miller,
Poonen,Schoutens and Shlapentokh, Lavrov, Nies, Marker, Mekler, and
Mal’tsev are all, in fact, Turing computable.
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Directed graphs ≤tc undirected graphs

Example (Marker)

For a directed graph G the undirected graph Θ(G ) consists of the
following:

1 For each point a in G , Θ(G ) has a point ba connected to a triangle.

2 For each ordered pair of points (a; a′) from G , Θ(G ) has a special
point p(a,a′) connected directly to ba and with one stop to b′a .

3 The point p(a,a′) is connected to a square if there is an arrow from a
to a′, and to a pentagon otherwise.

For structures A with more relations, the same idea works.
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Decoding via nice defining formulas

Fact: For Marker’s embedding Θ, we have finitary existential formulas
that, for all directed graphs G , define in Θ(G ) the following.

1 the set of points ba connected to a triangle,

2 the set of ordered pairs such that the special point p(a,a′) is part of a
square,

3 the set of ordered pairs (ba, ba′) such that the special point p(a,a′) is
part of a pentagon.

This guarantees a uniform effective procedure that, for any copy of Θ(G ),
computes a copy of G . We have uniform effective decoding.
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Completeness for degree spectrum and dimensions
Hirschfeldt - Khoussainov - Shore - Slinko, 2002.
A class of structures K is complete with respect to degree spectra,
effective dimensions, expansion by constants, and degree spectra of
relations (HKSS-complete) if for every structure B (in a computable
language), there is a structure A ∈ K with the following properties:

1 DS(A) = DS(B).
2 If B is computably presentable, then the following holds:

1 A has the same d-computable dimension as B. (the number of
computable presentations up to d-computable isomorphism)

2 If b ∈ B, there is an a ∈ A such that (A, a) has the same computable
dimension as (B, b).

3 If S ⊆ B, there exists U ⊆ A such that DSA(U) = DSB(S) and if S is
intrinsically c.e., then so is U.

The undirected graphs, partial orderings, lattices, rings (with zero-
divisors), integral domains of arbitrary characteristic, commutative
semigroups, and 2-step nilpotent groups are all HKSS-complete.
Recall that the degree spectrum DS(A) of A is the set of Turing degrees
of all presentation of a structure A.
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Medvedev reducibility

A problem is a subset of 2ω or ωω.
Problem P is Medvedev reducible to problem Q if there is a Turing
operator Φ that takes elements of Q to elements of P.

Definition

We say that A is Medvedev reducible to B, and we write A ≤s B, if there
is a Turing operator that takes copies of B to copies of A.

Supposing that A is coded in B, a Medvedev reduction of A to B
represents an effective decoding procedure.

For classes K and K′, suppose that K ≤tc K′ via Θ. A uniform effective
decoding procedure is a Turing operator Φ s.t. for all A ∈ K, Φ takes
copies of Θ(A) to copies of A.
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Effective interpretability

Definition (Montlbán)

A structure A = (A,Ri ) is effectively interpreted in a structure B if there
is a set D ⊆ B<ω and relations ∼ and R∗i on D, such that

1 (D,R∗i )/∼ ∼= A,

2 there are computable Σ1-formulas with no parameters defining a set
D ⊆ B<ω and relations (¬) ∼ and (¬)R∗i in B (effectively
determined).

Example

The usual definition of the ring of integers Z involves an interpretation in
the semi-ring of natural numbers N. Let D be the set of ordered pairs
(m, n) of natural numbers. We think of the pair (m, n) as representing the
integer m − n. We can easily give finitary existential formulas that define
ternary relations of addition and multiplication on D, and the
complements of these relations, and a congruence relation ∼ on D, and
the complement of this relation, such that (D,+, ·)/∼ ∼= Z.
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Computable functor

Definition (R. Miller)

A computable functor from B to A is a pair of Turing operators Φ,Ψ such
that Φ takes copies of B to copies of A and Ψ takes isomorphisms
between copies of B to isomorphisms between the corresponding copies of
A, so as to preserve identity and composition.

More precisely, Ψ is defined on triples (B1, f ,B2), where B1,B2 are copies
of B with B1

∼=f B2.
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Equivalence

The main result gives the equivalence of the two definitions.

Theorem (Harrison-Trainor - Melnikov - R. Miller - Montalbán 2017)

For structures A and B, A is effectively interpreted in B iff there is a
computable functor Φ,Ψ from B to A.

Note: In the proof, it is important that D consist of tuples of arbitrary
arity.

Corollary

If A is effectively interpreted in B, then A ≤s B.
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Coding and Decoding

Proposition (Kalimullin, 2010)

There exist A and B such that A ≤s B but A is not effectively interpreted
in B.
There exist A and B such that A is effectively interpreted in (B, b̄) but A
is not effectively interpreted in B.

Proposition

If A is computable, then it is effectively interpreted in all structures B.

Proof.

Let D = B<ω. Let b̄ ∼ c̄ if b̄, c̄ are tuples of the same length. For
simplicity, suppose A = (ω,R), where R is binary. If A |= R(m, n), then
R∗(b̄, c̄) for all b̄ of length m and c̄ of length n. Thus,
(D,R∗)/∼ ∼= A.
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Interpretations by more general formulas

We may consider interpretations of A in B, where D, ± ∼, and ±R∗i are
defined in B by Σc

2 formulas, and we have (D, (R∗i )i∈ω)/∼ ∼= A.

Baleva, Soskov, S., Montalbán, Stukachev. The jump of A is a structure
A′ = (A, (Ri )i∈ω), where Ri is the relation defined in A by the i th Σc

1

formula. We can iterate the jump, forming A′′ = (A′)′, etc.

1 For a structure A, the jump is a structure A′ such that the relations
defined in A′ by Σc

1 formulas are just those defined in A by Σc
2

formulas.

2 For a structure A, the jump structure A′ is computed by D(A)′.

3 The relations defined in A′′ by Σc
1 formulas are just those defined in

A by Σc
3 formulas.
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Borel interpretability
Harrison-Trainor - R. Miller - Montlbán, 2018, defined Borel versions of
the notion of effective interpretation and computable functor.

Definition
1 For a Borel interpretation of A = (A,Ri ) in B the set D ⊆ B<ω the

relations ∼ and R∗i on D, are definable by formulas of Lω1ω.

2 For a Borel functor from B to A, the operators Φ and Ψ are Borel.

Note if R ⊆ B<ω, and we have a countable sequence of Lω1ω-formulas
ϕn(x̄n) defining R ∩ Bn, then we refer to

∨
n ϕn(x̄n) as an Lω1ω definition

of R.

Their main result gives the equivalence of the two definitions.

Theorem

A structure A is interpreted in B using Lω1ω-formulas iff there is a Borel
functor Φ,Ψ from B to A.
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Graphs and linear orderings

Graphs and linear orderings both lie on top under Turing computable
embeddings.

Graphs also lie on top under effective interpretation.

Question: What about linear orderings under effective interpretation?

And under using Lω1ω-formulas?
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Interpreting graphs in linear orderings

Proposition (Knight-S.-Vatev)

There is a graph G such that for all linear orderings L, G 6≤s L.

Proof.

Let S be a non-computable set. Let G be a graph such that every copy
computes S .
We may take G to be a “daisy” graph”, consisting of a center node with a
“petal” of length 2n + 3 if n ∈ S and 2n + 4 if n /∈ S .
Now, apply:

Proposition (Richter)

For a linear ordering L, the only sets computable in all copies of L are the
computable sets.
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Interpreting a graph in the jump of linear ordering

Proposition (Knight-S.-Vatev)

There is a graph G such that for all linear orderings L, G 6≤s L′.

Proof.

Let S be a non-∆0
2 set. Let G be a graph such that every copy computes

S . Then apply:

Proposition (Knight, 1986)

For a linear ordering L, the only sets computable in all copies of L′ (or in
the jumps of all copies of L), are the ∆0

2 sets.
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Interpreting a graph in the second jump of linear ordering

Proposition

For any set S , there is a linear ordering L such that for all copies of L, the
second jump computes S .

We may take L to be a “shuffle sum” of the discrete order of type n + 1
for every n ∈ S ⊕ Sc = {2k | k ∈ S} ∪ {2k + 1 | k 6∈ S} and order type ω
(densely many copies of each of these orderings). Then we have a pair of
finitary Σ3 formulas saying that n ∈ S if L has a maximal discrete set of
size 2n + 1 and n 6∈ S if L has a maximal discrete set of size 2n + 2. It
follows that any copy of L′′ uniformly computes the set S .

Proposition (Knight-S.-Vatev)

For any graph G , there is a linear ordering L such that G ≤s L′′.

Let S be the diagram of a specific copy of G and let L be a linear order
such that S ≤s L′′. Then G ≤s L′′.
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Friedman-Stanley embedding of graphs in orderings

Friedman and Stanley determined a Turing computable embedding
L : G → L(G ), where L(G ) is a sub-ordering of Q<ω under the
lexicographic ordering.

1 Let (An)n∈ω be an effective partition of Q into disjoint dense sets.

2 Let (tn)1≤n be a list of the atomic types in the language of directed
graphs.

Definition

For a graph G , the elements of L(G ) are the finite sequences
r0q1r1 . . . rn−1qnrnk ∈ Q<ω such that for i < n, ri ∈ A0, rn ∈ A1, and for
some a1, . . . , an ∈ G , satisfying tm, qi ∈ Aai and k < m.
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No uniform interpretation of G in L(G )

Theorem (Knight-S.-Vatev)

There are no Lω1ω formulas that, for all graphs G , interpret G in L(G ).

The idea of Proof: We may think of an ordering as a directed graph. It is
enough to show the following.

Proposition

A ωCK
1 is not interpreted in L(ωCK

1 ) using computable infinitary
formulas.

B For all X , ωX
1 is not interpreted in L(ωX

1 ) using X -computable
infinitary formulas.
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Proof of A
The Harrison ordering H has order type ωCK

1 (1 + η). It has a computable
copy.

Let I be the initial segment of H of order type ωCK
1 . Thinking of H as a

directed graph, we can form the linear ordering L(H). We consider
L(I ) ⊆ L(H).

Lemma

L(I ) is a computable infinitary elementary substructure of L(H).

Proposition (Main)

There do not exist computable infinitary formulas that define an
interpretation of H in L(H) and an interpretation of I in L(I ).

To prove A, we suppose that there are computable infinitary formulas
interpreting ωCK

1 in L(ωCK
1 ). Using Barwise Compactness theorem, we get

essentially H and I with these formulas interpreting H in L(H) and I in
L(I ).
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Proof of the Proposition(Main)

Lemma

1 For any b̄ ∈ L(I ), and c ∈ L(I ) there is an automorphism of L(I )
taking b̄ to a tuple b̄′ entirely to the right of c .

2 For any b̄ ∈ L(I ), and c ∈ L(I ) there is also an automorphism taking
b̄ to a tuple b̄′′ entirely to the left of c .

Lemma

Suppose that we have computable Σγ formulas D, <© and ∼, defining an
interpretation of H in L(H) and I in L(I ). Then in DL(I ) there is a fixed n,
and there are n-tuples, all satisfying the same Σγ formulas, and
representing arbitrarily large ordinals α < ωCK

1 .

We arrive at a contradiction by producing tuples b̄, b̄′, c̄ in DL(I ), b̄ and b̄′

are automorphic, b̄, c̄ and c̄ , b̄′ satisfy the same computable Σγ formulas,
and the ordinal represented by b̄ and b̄′ is smaller than that represented by
c̄ . Then b̄, c̄ should satisfy <©, while c̄ , b̄′ should not.
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Conjecture

We believe that Friedman and Stanley did the best that could be done.

Conjecture. For any Turing computable embedding Θ of graphs in
orderings, there do not exist Lω1ω formulas that, for all graphs G , define
an interpretation of G in Θ(G ).

M. Harrison-Trainor and A. Montlbán came to a similar result recently by
a totally different construction. Their result is that there exist structures
which cannot be computably recovered from their tree of tuples. They
proved :

1 There is a structure A with no computable copy such that T (A) has
a computable copy.

2 For each computable ordinal α there is a structure A such that the
Friedman and Stanley Borel interpretation L(A) is computable but A
has no ∆0

α copy.
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Effectively bi-interpretability
If B is effectively interpreted in A, we write BA for the copy of B given by
the effective interpretation of B in A.

Definition (Montalbán)

Structures A and B are effectively bi-interpretable if we have effective
interpretations of A in B and of B in A such that there are uniformly
relatively intrinsically computable isomorphisms from A to ABA and from
B to BAB

.

Theorem

For every structure A, there is a graph GA that is
effectively-bi-interpretable with A.

Definition

A class K is reducible to K′ via effective-bi-interpretability if there are Σc
1

formulas such that for every A ∈ K, there is a B ∈ K′ such that A and B
are effectively-bi-interpretable using those formulas.
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Effectively bi-interpretability
Montalbán: Let A and B are effectively bi-interpretable. Then

1 DS(A) = DS(B).

2 A is ∃-atomic if and only if B is. (for every tuple ā ∈ A, there is an
∃-formula which defines the automorphism orbit of ā.)

3 A is rigid if and only if B is.

4 The automorphism groups of A and B are isomorphic.

5 A is computably categorical if and only if B is.

6 A and B have the same computable dimension.

7 A has the c.e. extendibility condition if and only if B does. (each
∃-type realized in A is c.e.)

8 The index sets of A and B are Turing equivalent, provided A and B
are infinite.

On top: undirected graphs, partial orderings, and lattices(Hirschfeldt,
Khoussainov, Shore and Slinko), fileds(R. Miller, Park, Poonen, Schoutens,
and Shlapentokh).
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