Complexity of root-taking in power series fields & related problems

Karen Lange Wellesley College

Joint work with Chris Hall, Julia F. Knight, and Reed Solomon

Root-taking in Puiseux Series

Let *K* be an algebraically closed field of characteristic 0.

Definition

A *Puiseux series* over *K* has the form

$$
s = \sum_{1 \leq i \in \mathbb{Z}} a_i t^{\frac{i}{m}}
$$
 for some $m \in \mathbb{N}$, $l \in \mathbb{Z}$

The *support* of *s* is $Supp(s) = \{\frac{i}{m} | l \le i \in \mathbb{Z} \& a_i \ne 0\}.$ Let *K{{t}}* denote the field of Puiseux series over *K*. **Example** $s = 3t^{-\frac{1}{2}} + \pi t^0 + 2t^{\frac{1}{2}} + -t^1 + \dots$ with $Supp(s) = \{-\frac{1}{2}, 0, \frac{1}{2}, 1, \ldots\}.$

Newton-Puiseux Theorem

If *K* is an algebraically closed field, then *K{{t}}* is algebraically closed as well.

\mathbb{Z} *, a_i* ∈ **K**.

Generalizing Puiseux Series

Let *K* be an algebraically closed field of characteristic 0. Let *G* be a divisible ordered abelian group.

Definition

A *Hahn series* over *K* and *G* has the form

If *K* is an algebraically closed field and *G* is a divisible ordered abelian group, then $K((G))$ is algebraically closed as well.

$$
s = \sum_{g \in S} a_g t^g
$$
 for a well-ordered $S \subset G$ and $a_g \in K^{\neq 0}$.

Let *K*((*G*)) be the field of Hahn series.

Example $s = \pi t^0 + t^3 + -t^{3.1} + t^{3.14} + t^{3.141} + \ldots + t^4$ with $Supp(s) = \{0, 3, 3.1, 3.14, 3.141, \ldots, 4\}.$

Theorem (Mac Lane '39)

Complexity of the root-taking process

Let

$$
p(x) = A_0 + A_1x + \ldots + A_nx^n,
$$

where the A_i are all in $K({t})$ or all in $K((G))$.

Describe the complexity of the roots of $p(x)$ in terms of the A_i 's, *K*, and *G*.

Goal

Turns out to be related to the complexity of natural problems about well-ordered subsets of *G*.

Valuation on Puiseux series

Definition A *Puiseux series* over *K* has the form

$$
\sum_{1 \leq i \in \mathbb{Z}} a_i t^{\frac{i}{m}}
$$
 for some $m \in \mathbb{N}$, $l \in \mathbb{Z}$,

Example
$$
s = 3t^{-\frac{1}{2}} + \pi t^0 + 2t^{\frac{1}{2}} + \pi t^1 + \dots
$$
 with
\n
$$
Supp(s) = \{-\frac{1}{2}, 0, \frac{1}{2}, 1, \dots\}.
$$

 $K({t})$ has a natural valuation $w: K({t}) \rightarrow \mathbb{Q} \cup \{\infty\}$ s.t.

$$
w(s) := \begin{cases} \min(Supp(s)) & \text{if } s \neq 0 \\ \infty & \text{if } s = 0 \end{cases}
$$

Think of *t* as infinitesimal, so t^q infinitesimal if $q > 0$ and t^q infinite if $q < 0$.

$a_i \in K$.

Newton-Pusieux Method in *K{{t}}*

Let $p(x) = A_0 + A_1x + \ldots + A_nx^n$ be a nonconstant polynomial over *K{{t}}*.

 $A_0 = 0$ implies 0 is a root of $p(x)$

Suppose $A_0 \neq 0$.

Construct Newton Polygon to compute a root *r* of *p*(*x*). **I** Calculate leading term $r = bt^{\nu} + ...$ to make terms cancel.

Newton-Pusieux Method in *K{{t}}*

Let $p(x) = A_0 + A_1x + ... + A_nx^n$ be a nonconstant polynomial over $K\{\{t\}\}\$ with $A_0 \neq 0$.

Roots are t and $t^{1/2}$ (with multiplicity 2).

Draw Newton Polygon

Let
$$
p(x) = A_0 + A_1x + ... + A_nx^n
$$
 be a nonconstant, $A_0 \neq 0$.

Roots are t and $t^{1/2}$ (with multiplicity 2).

Steps

- 1. Plot $(i, w(A_i))$ for $i = 0, ..., n$.
- 2. Draw convex Newton Polygon.

Newton Polygon Example

Facts about the Newton Polygon

 $\sum_{\Delta_{\circ}}$ *A*³ *x*³.

If The valuation ν of at least one root $r = bt^{\nu} + \cdots$ is the negative of the slope of a side.

Facts about the Newton Polygon

▶ Convexity means slopes increasing, so root of greatest valuation associated with leftmost side.

Facts about the Newton Polygon

I Calculate $b \in K$ by finding a root of poly. in $K[x]$ determined by leading coefficients of terms lying on corresponding side of Newton polygon.

Continuing to approximate *r*

Let
$$
p(x) = A_0 + A_1x + ... + A_nx^n
$$
 be a nonconstant, $A_0 \neq 0$.

To find the next term in root $r = bt^{\nu} + \cdots$ having calculated $r_1 = bt^{\nu}$,

Consider $q(x) = p(r_1 + x) = B_0 + B_1x + \cdots + B_nx^n$.

If $B_0 = 0$, then r_1 is a root.

If $B_0 \neq 0$, then repeat this process.

Representing Puiseux series

Suppose K has universe ω . Fix a computable copy of $\mathbb Q$ with universe ω .

Consider the *Puiseux series*

$$
s = \sum_{1 \leq i \in \mathbb{Z}} a_i t^{\frac{i}{m}}
$$
 for some $m \in \mathbb{N}$, $l \in \mathbb{Z}$

Represent *s* by a function $f: \omega \to K \times \mathbb{Q}$ s.t. if $f(n)=(a_n, q_n)$, then

$$
s=\sum_{n\in\omega}a_nt^{q_n}.
$$

and

- \blacktriangleright *q_n* increases with *n*, so
- If there is a uniform bound on the denominators of the q_n terms, so $\lim_{n\to\infty} q_n = \infty$.

\mathbb{Z} , $a_i \in K$.

Complexity of basic operations in *K{{t}}*

Lemma Let *K* and $s, s' \in K\{\{t\}\}\$ be given.

- 1. We can effectively compute $s + s'$ and $s \cdot s'$.
- 2. It is Π_1^0 , but not computable, to say that $s = 0$.
	- **If** Given that $s \neq 0$, we can effectively find $w(s)$.
	- **If** Regardless of whether $s \neq 0$, we can effectively order $w(s)$ and *any* $q \in \mathbb{Q}$.

Complexity of root-taking over *K{{t}}*

Theorem (Knight, L., Solomon)

There is a uniform effective procedure that, given K and the *sequence of coecients for a non-constant polynomial over K{{t}}, yields a root.*

Corollary

Let $p(x) = A_0 + A_1x + \ldots + A_nx^n$ *be a polynomial over* $K({t})$. *Then all roots of* $p(x)$ *are computable in K and the coefficients* A_i *.*

Complexity of root-taking over *K{{t}}*: Key Issues

Theorem (Knight, L., Solomon)

There is a uniform effective procedure that, given K and the sequence of coecients for a non-constant polynomial over K{{t}}, yields a root.

Cannot effectively

 \blacktriangleright determine if a coefficient $A_i = 0$.

Hence, can't check if $A_0 = 0$, i.e., 0 is a root.

 \blacktriangleright determine the valuation $w(A_i)$.

So cannot uniformly compute Newton Polygon I tell if the root r is a finite sum.

But must append terms to *r* while checking if done.

Definition: Hahn fields *K*((*G*))

- 1. Let $K((G))$ be the set of formal sums $s = \sum_{g \in S} a_g t^g$ where \blacktriangleright *a*_{*g*} \in $K^{\neq 0}$ and
	- S is a well ordered subset of G.

2. The *natural valuation* is the function $w : K((G)) \to G \cup \{\infty\}$ such that

S is the *support* of *s* and is denoted *Supp*(*s*). The *length* of *s* is the order type of *S* in *G*.

$$
w(s) = \begin{cases} \min Supp(s) & \text{if } s \neq 0 \\ \infty & \text{if } s = 0 \end{cases}
$$

Example
$$
s = \pi t^0 + t^3 + -t^{3.1} + t^{3.14} + t^{3.141} + \dots + t^4
$$
 with
\n
$$
Supp(s) = \{0, 3, 3.1, 3.14, 3.141, \dots, 4\}.
$$
\n
$$
length(s) = \omega + 1
$$

Representing Hahn series: two approaches

Let
$$
s = \sum_{g \in S} a_g t^g \in K((G))
$$
.

Represent *s* in two ways as:

1. a function $f: \alpha \rightarrow K \times G$ for some ordinal α s.t.

$$
\text{if } f(\gamma) = (a_{\gamma}, g_{\gamma}), \text{ then } s = \sum_{\gamma < \alpha} a_{\gamma} t^{g_{\gamma}} \text{ and } \\ g_{\beta} < g_{\gamma} \text{ for all } \beta < \gamma < \alpha.
$$

2. a function $\sigma : G \rightarrow K$ s.t.

 $S = \{g \in G : \sigma(g) \neq 0\}$ is well ordered and $s = \sum_{g \in S} \sigma(g) t^g$.

and

Admissible Sets

Definition

An *admissible set* is a transitive set that satisfies essentially

- \blacktriangleright the axioms of ZF but with no power set axiom and
- I the axioms of Comprehension and Replacement restricted to Δ_0^0 -formulas, finite conjuncts and disjuncts of atomic formulas and their negations.

Example: $L_{\omega_1^{CK}}$, the least admissible set containing ω .

The subsets of ω in $L_{\omega_1^{CK}}$ are exactly the Δ^1_1 sets, i.e., the hyperarithmetical sets.

Advantage of Admissible Sets containing ω

Theorem

Let A be an admissible set containing the field K and group G. Then the generalized Newton-Puiseux Theorem holds in A, i.e., any polynomial p(*x*) *over K*((*G*)) *with coecients in A has a root r in A.*

Can define functions *F* by induction on the ordinals,

as long as have a Σ_1 formula describing how to obtain $F(\alpha)$ from $F(\alpha)$.

Lengths of roots & other tools

Theorem (Knight & L.) *Let* $p(x) = A_0 + \ldots + A_n x^n$ *be a polynomial over* $K((G))$. If γ is a a limit ordinal greater than the lengths of all A_i , *then any root of* $p(x)$ *has length less than* $\omega^{\omega^{\gamma}}$ *.*

Lemma

Let A be an admissible set containing the field K and group G.

- **I** The function $\alpha \to \omega^{\alpha}$ is Σ_1 -definable on A.
- If s, s' are elements of $K((G))$ in A, then
	- $s + s'$, $s \cdot s'$, $Supp(s)$ and the length of s are all in A .

Root-taking in Hahn Fields

Theorem

Let A be an admissible set containing the field K and group G. Then the generalized Newton-Puiseux Theorem holds in A, i.e., any polynomial $p(x)$ over $K((G))$ with coefficients in A has a root *r in A.*

Initial segments of roots

New Procedure

Let $p(x) = A_0 + A_1x + \ldots + A_nx^n$ be a polynomial over $K((G))$. At step α determine an initial segment r_{α} of a root of $p(x)$, s.t. $r_0 = 0$ and for $\alpha > 0$, either r_α has length α and extends r_β for all $\beta < \alpha$

or there is some $\beta < \alpha$ s.t. r_{β} is already root and $r_{\alpha} = r_{\beta}$.

View r_{α} as a function $r_{\alpha}: G \rightarrow K$ with well ordered support.

New Goal

Bound complexity of carrying out this procedure to step α when given K , G , and $p(x)$.

-
-

Complexity of root-taking procedure in *K*((*G*))

Proposition

The procedure to carry out step α *is* $\Delta^0_{f(\alpha)}$ *in K*, *G*, and *p*, where *f is defined as:*

1.
$$
f(\alpha) = \sup_{\beta < \alpha} f(\beta) + 1
$$
.
2. for $n \ge 1$, $f(\alpha + n) = f(\alpha) + 1$.

For finite $n \geq 1$, the results below, apart from the last, are sharp.

Step *n* is
$$
\Delta_2^0
$$
.
\nStep ω is Δ_3^0 .
\nStep $\omega + n$ is Δ_4^0 .
\nStep $\omega + \omega$ is Δ_5^0 , but unknown if sharp.

Complexity of root-taking procedure in *K*((*G*))

Determining $r_{\omega+\omega}$ as a function is Δ_5^0 , but unknown.

But Complexity continues to go up with length.

Proposition

For each computable ordinal α , *Step* ω^{α} *is* $\prod_{2\alpha}^{0}$ -hard.

Proof: Step ω^{α} is $\Pi_{2\alpha}^{0}$ -hard

Let *S* be a $\Pi_{2\alpha}^{0}$ set.

There is a uniformly computable sequence of orderings *Cⁿ* s.t. $C_n \subset \mathbb{Q} \cap (0,1)$ has o.t. ω^{α} if $n \in S$ and some $\gamma < \omega^{\alpha}$ otherwise.

Key ingredient

Let $B_n = \sum$ *q*2*Cⁿ tq*.

Consider the polynomial $p_n(x) = B_n - x$, with unique root $r = B_n$.

If
$$
n \in S
$$
, then $r = r_{\omega^{\alpha}}$.
If $n \notin S$, then $r = r_{\gamma}$ for some $\gamma < \omega^{\alpha}$.

So, S is reducible to Step ω^{α} applied to $(p_n(x))_{n\in\omega}$.

Bounds on Root-taking procedure in *K*((*G*)) sharp?

Proposition

The procedure to carry out step α *is* $\Delta^0_{f(\alpha)}$ *in K*, *G*, and *p*, where *f was defined as before.*

For finite $n \geq 1$, the results below, apart from the last, are sharp.

Step n is Δ_2^0 *. Step* ω *is* Δ_3^0 *.* $Step \omega + n$ is Δ_4^0 . $Step \omega + \omega$ is Δ_5^0 , but unknown if sharp.

But seemingly not using full power of multiplication.

Pivot to simpler setting

Goal

Get better bounds on the root-taking process for *K*((*G*)).

Let $s \in K((G))$.

- \blacktriangleright *support*(s^2) is a well ordered subset of sums of pairs of elements in $support(s) \subset G$.
- I Natural to consider complexity of problems associated with well-ordered subsets of *G*.

Problems associated with well-ordered subsets *A, B* of *G*

How hard is it to:

- 1. Check that A has order type at least α ? Find the α^{th} element of A?
- 2. Let $A + B := \{a + b : a \in A \& b \in B\}$. Check $A + B$ has order type at least α ? Compute initial segments of $A + B$?
- 3. If $A \subseteq G^{\geq 0}$, the set $[A]$ of finite sums of elements of A is well-ordered.

Check [A] has order type at least α ? Compute initial segments of [*A*]?

Takeaways

- 1. Newton's Method over *K{{t}}* is uniformly computable in *K* and a nonconstant polynomial.
- 2. Newton's Method over *K*((*G*)) can be carried out in any admissible set containing the field *K* and group *G*.
- 3. Latter problem naturally involves complexity of problems involving well ordered subsets of *G*.

Thanks!

F. Saugata Basu, Richard Pollack, and Marie-Françoise Roy. *Algorithms in real algebraic geometry*, volume 10 of *Algorithms and Computation in Mathematics*. Springer-Verlag, Berlin, second edition, 2006. 螶 J. Knight, K. Lange, and D. R. Solomon. Roots of polynomials in fields roots of polynomials in fields of generalized power series. In *Proceedings for Aspects of Computation*. World Scientific. To appear. 螶 Julia F. Knight and Karen Lange.

Lengths of roots of polynomials in a Hahn field. Submitted.