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Root-taking in Puiseux Series

Let K be an algebraically closed field of characteristic 0.

Definition

A Puiseux series over K has the form

s =

X

Ii2Z
ai t

i
m for some m 2 N, l 2 Z, ai 2 K .

The support of s is Supp(s) = { i
m | I  i 2 Z & ai 6= 0}.

Let K{{t}} denote the field of Puiseux series over K .

Example s = 3t
� 1

2 + ⇡t0 + 2t
1
2 +�t

1
+ . . . with

Supp(s) = {�1
2 , 0,

1
2 , 1, . . .}.

Newton-Puiseux Theorem

If K is an algebraically closed field, then K{{t}} is algebraically

closed as well.



Generalizing Puiseux Series

Let K be an algebraically closed field of characteristic 0.

Let G be a divisible ordered abelian group.

Definition

A Hahn series over K and G has the form

s =

X

g2S
ag t

g
for a well-ordered S ⇢ G and ag 2 K

6=0
.

Let K ((G )) be the field of Hahn series.

Example s = ⇡t0 + t
3
+�t

3.1
+ t

3.14
+ t

3.141
+ . . .+ t

4
with

Supp(s) = {0, 3, 3.1, 3.14, 3.141, . . . , 4}.

Theorem (Mac Lane ’39)

If K is an algebraically closed field and G is a divisible ordered

abelian group, then K ((G )) is algebraically closed as well.



Complexity of the root-taking process

Let

p(x) = A0 + A1x + . . .+ Anx
n,

where the Ai are all in K{{t}} or all in K ((G )).

Goal

Describe the complexity of the roots of p(x) in terms of the Ai ’s,

K , and G .

Turns out to be related to the complexity of natural problems

about well-ordered subsets of G .



Valuation on Puiseux series

Definition

A Puiseux series over K has the form

X

Ii2Z
ai t

i
m for some m 2 N, l 2 Z, ai 2 K .

Example s = 3t
� 1

2 + ⇡t0 + 2t
1
2 +�t

1
+ . . . with

Supp(s) = {�1
2 , 0,

1
2 , 1, . . .}.

K{{t}} has a natural valuation w : K{{t}} ! Q
S
{1} s.t.

w(s) :=

⇢
min(Supp(s)) if s 6= 0

1 if s = 0

Think of t as infinitesimal, so t
q
infinitesimal if q > 0 and t

q

infinite if q < 0.



Newton-Pusieux Method in K{{t}}

Let p(x) = A0 + A1x + . . .+ Anx
n
be a nonconstant polynomial

over K{{t}}.

I A0 = 0 implies 0 is a root of p(x)

Suppose A0 6= 0.

Construct Newton Polygon to compute a root r of p(x).

I Calculate leading term r = bt
⌫
+ . . . to make terms cancel.



Newton-Pusieux Method in K{{t}}

Let p(x) = A0 + A1x + . . .+ Anx
n
be a nonconstant polynomial

over K{{t}} with A0 6= 0.

Example
p(x) = �t

2
|{z}
A0

+(t + 2t
3/2

)| {z }
A1

x +�(2t
1/2

+ t)| {z }
A2

x
2
+ 1|{z}

A3

x
3
.

Roots are t and t
1/2

(with multiplicity 2).



Draw Newton Polygon

Let p(x) = A0 + A1x + . . .+ Anx
n
be a nonconstant, A0 6= 0.

Example
p(x) = �t

2
|{z}
A0

+(t + 2t
3/2

)| {z }
A1

x +�(2t
1/2

+ t)| {z }
A2

x
2
+ 1|{z}

A3

x
3
.

Roots are t and t
1/2

(with multiplicity 2).

Steps

1. Plot (i ,w(Ai )) for i = 0, . . . , n.

2. Draw convex Newton Polygon.



Newton Polygon Example

p(x) = �t
2

|{z}
A0

+(t + 2t
3/2

)| {z }
A1

x +�(2t
1/2

+ t)| {z }
A2

x
2
+ 1|{z}

A3

x
3.



Facts about the Newton Polygon

Example p(x) = �t
2

|{z}
A0

+(t + 2t
3/2

)| {z }
A1

x +�(2t
1/2

+ t)| {z }
A2

x
2
+ 1|{z}

A3

x
3
.

I The valuation ⌫ of at least one root r = bt
⌫
+ · · · is the

negative of the slope of a side.



Facts about the Newton Polygon

Example p(x) = �t
2

|{z}
A0

+(t + 2t
3/2

)| {z }
A1

x +�(2t
1/2

+ t)| {z }
A2

x
2
+ 1|{z}

A3

x
3
.

I Convexity means slopes increasing, so root of greatest

valuation associated with leftmost side.



Facts about the Newton Polygon

Example p(x) = �t
2

|{z}
A0

+(t + 2t
3/2

)| {z }
A1

x +�(2t
1/2

+ t)| {z }
A2

x
2
+ 1|{z}

A3

x
3
.

I Calculate b 2 K by finding a root of poly. in K [x ] determined

by leading coe�cients of terms lying on corresponding side of

Newton polygon.



Continuing to approximate r

Let p(x) = A0 + A1x + . . .+ Anx
n
be a nonconstant, A0 6= 0.

To find the next term in root r = bt
⌫
+ · · · having calculated

r1 = bt
⌫
,

Consider q(x) = p(r1 + x) = B0 + B1x + · · ·+ Bnx
n
.

If B0 = 0, then r1 is a root.

If B0 6= 0, then repeat this process.



Representing Puiseux series

Suppose K has universe !.
Fix a computable copy of Q with universe !.

Consider the Puiseux series

s =

X

Ii2Z
ai t

i
m for some m 2 N, l 2 Z, ai 2 K .

Represent s by a function f : ! ! K ⇥Q s.t.

if f (n) = (an, qn), then

s =

X

n2!
ant

qn .

and

I qn increases with n, so

I there is a uniform bound on the denominators of the qn terms,

so limn!1 qn = 1.



Complexity of basic operations in K{{t}}

Lemma

Let K and s, s 0 2 K{{t}} be given.

1. We can e↵ectively compute s + s
0
and s · s 0.

2. It is ⇧
0
1, but not computable, to say that s = 0.

I Given that s 6= 0, we can e↵ectively find w(s).

I Regardless of whether s 6= 0, we can e↵ectively order w(s) and

any q 2 Q.



Complexity of root-taking over K{{t}}

Theorem (Knight, L., Solomon)

There is a uniform e↵ective procedure that, given K and the

sequence of coe�cients for a non-constant polynomial over

K{{t}}, yields a root.

Corollary

Let p(x) = A0 + A1x + . . .+ Anx
n
be a polynomial over K{{t}}.

Then all roots of p(x) are computable in K and the coe�cients Ai .



Complexity of root-taking over K{{t}}: Key Issues

Theorem (Knight, L., Solomon)

There is a uniform e↵ective procedure that, given K and the

sequence of coe�cients for a non-constant polynomial over

K{{t}}, yields a root.

Cannot e↵ectively

I determine if a coe�cient Ai = 0.

Hence, can’t check if A0 = 0, i.e., 0 is a root.

I determine the valuation w(Ai ).

So cannot uniformly compute Newton Polygon

I tell if the root r is a finite sum.

But must append terms to r while checking if done.



Definition: Hahn fields K ((G ))

1. Let K ((G )) be the set of formal sums s = ⌃g2Sag t
g
where

I ag 2 K
6=0

and

I S is a well ordered subset of G .

S is the support of s and is denoted Supp(s).

The length of s is the order type of S in G .

2. The natural valuation is the function w : K ((G )) ! G [ {1}
such that

w(s) =

⇢
min Supp(s) if s 6= 0

1 if s = 0

Example s = ⇡t0 + t
3
+�t

3.1
+ t

3.14
+ t

3.141
+ . . .+ t

4
with

Supp(s) = {0, 3, 3.1, 3.14, 3.141, . . . , 4}.
length(s) = ! + 1



Representing Hahn series: two approaches

Let s =
P

g2S ag t
g 2 K ((G )).

Represent s in two ways as:

1. a function f : ↵ ! K ⇥ G for some ordinal ↵ s.t.

if f (�) = (a� , g�), then s =
P

�<↵ a�t
g� and

g� < g� for all � < � < ↵.

2. a function � : G ! K s.t.

S = {g 2 G : �(g) 6= 0} is well ordered and

s =
P

g2S �(g)t
g
.



Admissible Sets

Definition

An admissible set is a transitive set that satisfies essentially

I the axioms of ZF but with no power set axiom and

I the axioms of Comprehension and Replacement restricted to
�

0
0-formulas, finite conjuncts and disjuncts of atomic

formulas and their negations.

Example: L!CK
1
, the least admissible set containing !.

The subsets of ! in L!CK
1

are exactly the �
1
1 sets, i.e., the

hyperarithmetical sets.



Advantage of Admissible Sets containing !

Theorem

Let A be an admissible set containing the field K and group G .

Then the generalized Newton-Puiseux Theorem holds in A, i.e.,

any polynomial p(x) over K ((G )) with coe�cients in A has a root

r in A.

Can define functions F by induction on the ordinals,

as long as have a ⌃1 formula describing

how to obtain F (↵) from F |↵.



Lengths of roots & other tools

Theorem (Knight & L.)

Let p(x) = A0 + . . .+ Anx
n
be a polynomial over K ((G )).

If � is a a limit ordinal greater than the lengths of all Ai ,

then any root of p(x) has length less than !!�
.

Lemma

Let A be an admissible set containing the field K and group G .

I The function ↵ ! !↵
is ⌃1-definable on A.

I If s, s 0 are elements of K ((G )) in A, then

s + s
0
, s · s 0, Supp(s) and the length of s are all in A.



Root-taking in Hahn Fields

Theorem

Let A be an admissible set containing the field K and group G .

Then the generalized Newton-Puiseux Theorem holds in A, i.e.,

any polynomial p(x) over K ((G )) with coe�cients in A has a root

r in A.



Initial segments of roots

New Procedure

Let p(x) = A0 + A1x + . . .+ Anx
n
be a polynomial over K ((G )).

At step ↵ determine an initial segment r↵ of a root of p(x), s.t.

r0 = 0 and for ↵ > 0,

either r↵ has length ↵ and extends r� for all � < ↵

or there is some � < ↵ s.t. r� is already root and r↵ = r� .

View r↵ as a function r↵ : G ! K with well ordered support.

New Goal

Bound complexity of carrying out this procedure to step ↵ when

given K , G , and p(x).



Complexity of root-taking procedure in K ((G ))

Proposition

The procedure to carry out step ↵ is �
0
f (↵) in K , G , and p, where

f is defined as:

1. f (↵) = sup�<↵f (�) + 1.

2. for n � 1, f (↵+ n) = f (↵) + 1.

For finite n � 1, the results below, apart from the last, are sharp.

Step n is �
0
2.

Step ! is �
0
3.

Step ! + n is �
0
4.

Step ! + ! is �
0
5, but unknown if sharp.



Complexity of root-taking procedure in K ((G ))

Determining r!+! as a function is �
0
5, but unknown.

But Complexity continues to go up with length.

Proposition

For each computable ordinal ↵, Step !↵
is ⇧

0
2↵-hard.



Proof: Step !↵
is ⇧

0

2↵-hard

Let S be a ⇧
0
2↵ set.

Key ingredient
There is a uniformly computable sequence of orderings Cn s.t.

Cn ⇢ Q \ (0, 1) has o.t. !↵
if n 2 S and some � < !↵

otherwise.

Let Bn =
P

q2Cn t
q
.

Consider the polynomial pn(x) = Bn� x , with unique root r = Bn.

If n 2 S , then r = r!↵ .

If n /2 S , then r = r� for some � < !↵
.

So, S is reducible to Step !↵
applied to (pn(x))n2!.



Bounds on Root-taking procedure in K ((G )) sharp?

Proposition

The procedure to carry out step ↵ is �
0
f (↵) in K , G , and p, where

f was defined as before.

For finite n � 1, the results below, apart from the last, are sharp.

Step n is �
0
2.

Step ! is �
0
3.

Step ! + n is �
0
4.

Step ! + ! is �
0
5, but unknown if sharp.

But seemingly not using full power of multiplication.



Pivot to simpler setting

Goal

Get better bounds on the root-taking process for K ((G )).

Let s 2 K ((G )).

I support(s
2
) is a well ordered subset of sums of pairs of

elements in support(s) ⇢ G .

I Natural to consider complexity of problems associated with

well-ordered subsets of G .



Problems associated with well-ordered subsets A,B of G

How hard is it to:

1. Check that A has order type at least ↵?

Find the ↵th
element of A?

2. Let A+ B := {a+ b : a 2 A & b 2 B}.

Check A+ B has order type at least ↵?

Compute initial segments of A+ B?

3. If A ✓ G
�0

, the set [A] of finite sums of elements of A is

well-ordered.

Check [A] has order type at least ↵?

Compute initial segments of [A]?



Takeaways

1. Newton’s Method over K{{t}} is uniformly computable in K

and a nonconstant polynomial.

2. Newton’s Method over K ((G )) can be carried out in any

admissible set containing the field K and group G .

3. Latter problem naturally involves complexity of problems

involving well ordered subsets of G .



Thanks!

Saugata Basu, Richard Pollack, and Marie-Françoise Roy.

Algorithms in real algebraic geometry, volume 10 of Algorithms and
Computation in Mathematics.

Springer-Verlag, Berlin, second edition, 2006.

J. Knight, K. Lange, and D. R. Solomon.

Roots of polynomials in fields roots of polynomials in fields of generalized

power series.

In Proceedings for Aspects of Computation. World Scientific.

To appear.

Julia F. Knight and Karen Lange.

Lengths of roots of polynomials in a Hahn field.

Submitted.


