
Analytic complete equivalence relations and their degree
spectra

Dino Rossegger
MSRI, DDC - Computability Seminar

Department of Pure Mathematics, University of Waterloo

1



Classification problems for countable structures

Let A be a countable structure in language L and E be an equivalence
relation on structures in L.

Question 1. How complicated is ME(A) = {B : B EA}?

Question 2. How complicated is IE(A) = {e : ϕe = D(B) ∧ B EA}?
D(B) denotes the atomic diagram of B in the language L = (Ri)i∈I ,

D(B) =
⊕
i∈I

RB
i .

Question 3. How complicated is the relation E in a specific class o structures?
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Formal setting

To answer questions like Question 1 and 3 we consider the following setting:

Let L be a relational language with relation symbols (Ri/ai)i∈ω , then

Mod(L) =
∏
i∈ω

2ωai

is a Polish space and we can develop the Borel hierarchy (ΣΣΣ0
α,ΠΠΠ0

α,∆∆∆0
α),

projective hierarchy (ΣΣΣ1
α,ΠΠΠ1

α,∆∆∆1
α) in the usual way.

Theorem (Vaught)
A set S ⊆ Mod(L) is ΣΣΣ0

α (ΠΠΠ0
α) if and only if it is definable by a Σ0

α (Π0
α)

formula in Lω1,ω .
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Reducibility

Definition
Let E be a binary relation on a Polish space X and F be a binary relation on
a Polish space Y , then E is reducible to F if there is a function f : X → Y
such that for all x1, x2 ∈ X

x1 E x2 ⇔ f (x1) F f (x2).

E is Borel reducible to F, E ≤B F if f is Borel.

If X = Mod(L1) and Y = Mod(L2), then E is computably reducible to F E ≤c F
if there is a Turing operator Φ such that ΦD(S) = D(f (S)) for S ∈ Mod(L1).

Definition
E is a Γ-complete relation if E ∈ Γ and every relation in Γ is Borel reducible
to E.
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Examples

Two structures A and B are bi-embeddable, A ≈ B if either is isomorphic to
a substructure of the other.

Theorem (Louveau, Rosendal ’05)
Bi-embeddability on graphs, ≈G, is a ΣΣΣ1

1 complete equivalence relation.

Theorem (Calderoni, Thomas ’19)
Bi-embeddability on abelian groups, ≈A, is a ΣΣΣ1

1 complete equivalence
relation.

Theorem (Friedman, Stanley ’89;folklore;Hjorth ’00)
Isomorphism on graphs ∼=G is

1. complete among isomorphism on classes of structures,

2. not Borel,

3. not ΣΣΣ1
1 complete.
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Degree spectra

The isomorphism spectrum of a structure, the set of Turing degrees of its
isomorphic copies is one of the classic notions studied in computable
structure theory.

Fokina, Semukhin, and Turetsky; Montalbán; and Yu independently suggested
to study degree spectra with respect to equivalence relations.

Definition
Given an equivalence relation E on Mod(L) and A ∈ Mod(L), the degree
spectrum of A w.r.t E is

DgSpE(A) = {X ∈ 2ω : ∃B(B EA & D(B) ≡T X)}

Observation: The complexity of the equivalence relation restricts the
complexity of its degree spectra.

Proposition (folklore)
If E isΠΠΠ0

α, then for every A ∈ Mod(L) DgSpE(A) is ΣΣΣ0
α+1.
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Examples

Let A ≡n B ⇔ Thn(A) = Thn(B).

Theorem (Fokina, Semukhin, Turetsky ’19)
The class highn = {X : X(n) ≥T ∅(n+1)} is not a ≡n spectrum, but it is a ≡n+1

spectrum.

Proof idea. First, show that highn is not ΣΣΣ0
n+2 using forcing. Notice that ≡n is

Π0
n+1. Thus, highn can not be a ≡n spectrum by Proposition.

But it is possible to construct a structure A such that DgSp≡n+1(A) = highn.

Another related and important example arises from Scott’s isomorphism
theorem:

Proposition (folklore)
Every isomorphism spectrum is Borel.
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Degree spectra of ΣΣΣ1
1 complete equivalence relations

Fokina, R., and San Mauro ’19: Bi-embeddability spectra of structures.

Bi-embeddability does not allow coding.

Theorem (Knight ’86)
Let X ⊆ ω. Tfae:

1. X is c.e. in every isomorphic copy of A.

2. X is enumeration reducible to ∃ − tpA(ā) for some ā ∈ A<ω .

Example: Slaman; Wehner ’98: There is a structure A with
DgSp∼=(A) = {X : X >T ∅}.
Bouquet graph of Wehner family {{n} ⊕ D : D finite & Wn 6= D}
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{{n} ⊕ D : D finite & Wn 6= D}

Theorem (Fokina, R., San Mauro ’19)
There is a graph G such that DgSp≈(G) = {{n} ⊕ D : D finite & Wn 6= D}

This and similar results are obtainable by using strong codings that include
negative information (Csima, Kalimullin ’10).

However, its hard to obtain negative results.

Until now, the only examples of sets that can not be bi-embeddability
spectra are sets that are not upwards closed.
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Elementary bi-embeddability

Two structures A and B are elementary bi-embeddable if either is
isomorphic to an elementary substructure of the other.

R. ’18: Elementary bi-embeddability (u) spectra

• Bi-embeddability spectra allow coding: If A 4 B, then for all ā ∈ A<ω

∃ − tpA(ā) = ∃ − tpB(ā).

• Most examples of isomorphism spectra carry over.

• u-spectra, ≈-spectra, and ∼=-spectra have not been separated.

• The complexity of elementary bi-embeddability and elementary
embeddability seems to be poorly understood.
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The complexity of u

Theorem (R.)
The elementary bi-embeddability relation on graphs is ΣΣΣ1

1-complete.

We prove this theorem by giving a reduction from ↪→G to 4G. It then follows
from the completeness of ↪→G (Louveau, Rosendal) that 4G is ΣΣΣ1

1 complete.
That uG is ΣΣΣ1

1 complete is an immediate corollary.

We do a Marker extension using structures with a special model theoretic
property to obtain a result about degree spectra.

Theorem (R.)
Let G be a graph, then there exists a graph Ĝ such that

DgSpu(Ĝ) = {X : X′ ∈ DgSp≈(G)}.
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Proof sketch

Given G we first produce a structure f (G) by replacing edges with copies of a
L−structure C and non-edges with copies of D.

A : a b g(A) : ag bg
D

C

Formally: f(G) is an L ∪ {V/1, O/3} structures where we have a bijection f : G → V and the L-reduct of O(f(a), f(b), −) is
isomorphic to C if aEb and D if ¬aEb, no L-symbol holds on elements of V and the sets V , and O(a, b, −) for a, b ∈ V are pairwise
disjoint.

If h : G1 ↪→ G2, then there is an induced embedding f (h) : f (G1) ↪→ f (G2). To
show that f (h) is elementary we show that player II has a winning strategy in
the Ehrenfeucht-Fraïssé games Gn((f (G1), ā), (f (G2), f (h)(ā)) for all n, and
ā ∈ f (G1)<ω .

That G1 ↪→ G2 iff f (G1) 4 f (G2) it is sufficient that

1. C 6∼= D, C ≡ D,
2. C 64 D ∧ D 64 C.

In particular, G1 ≈ G2 iff f (G1) ≈ f (G2). We can code the structures f (G) into a
graph using standard codings.
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For DgSpu(f (G)) = {X : X′ ∈ DgSp≈(G)} it is sufficient that

1. for all A ≈ G A ≥T f (A),
2. for all B u f (G) there is A

2.1 with f (A) ∼= B,
2.2 and B′ ≥T Â ∼= A.

(2)(a) is essential and non-trivial, e.g. take C = (ω, ω + ζ), D = (ω + ζ, ω).
Then we would get that f (G)′ ≥T Ĝ ∼= G but the structure obtained if we use
C = (ω, ω) = D would elementary embed into f (G).

1. C ≡ D,

2’. for every A 6∼= C, A 64 C,

2”. for every A 6∼= D, A 64 D.
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Minimal Models

Definition

1. A structure A is minimal, if there is no B such that B 4 A.

Question (Vaught): What is the number of minimal models a theory can
have?

Theorem (Fuhrken ’66)
There is a theory with 2ℵ0 minimal models.

Theorem (Shelah ’71)
For every κ ≤ ℵ0, there is a theory with κ minimal models.
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Shelah’s theory

For ν ∈ 2<ω define Fν : 2ω → 2ω , σ 7→ ν +2 σ (where ν is interpreted as ν_0̄
and +2 is base 2 addition).

Let Rν = {σ ∈ 2ω : ν � σ} and consider the theory T of

A = (2ω, 〈Fν〉ν∈2<ω , 〈Rν〉ν∈2<ω ).

Shelah used T and variations of T to prove his theorem. It is easy to see that

1. T has quantifier elimination,

2. the substructure 〈σ〉 generated by σ ∈ 2ω is an elementary substructure
of A,

3. 〈σ〉 is minimal,

4. if ∃∞i σ(i) 6= τ(i), then there is a Σc
2 sentence distuingishing 〈σ〉 and 〈τ〉.

∃x
∧
ν�σ

Rσ(x)
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Lemma
Let X be ∆0

2(Y) for a set Y, then there exists a sequence of structures (Ci)i∈ω ,
uniformly computable in Y, such that

Ci ∼=

{
〈0̄〉 if i ∈ X,

〈1̄〉 if i 6∈ X.

We do a Marker extension with 〈0̄〉 and 〈1̄〉 to obtain the result that for every
graph G, there is a graph Ĝ such that

DgSpu(Ĝ) = {X : X′ ∈ DgSp≈(G)}.
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Ending Thoughts

• We still do not know how to seperate isomorphism and
bi-embeddability spectra.

• The main result can be used to obtain the first “non-trivial” example of
a set of degrees that can not be a bi-embeddability spectrum.

Corollary
Let X, Y >T ∅′ and X 6≡T Y, then

{Z : Z′ ≥T X} ∪ {Z : Z′ ≥T Y}

is not the bi-embeddability spectrum of a graph.

Question: Let F be a ≈, u, or ≡ spectrum, is {X′ : X ∈ F}?

Question: Examples of upwards closed sets of Turing degrees that are ΣΣΣ1
1

and not Borel?

Thank you!
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