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Motivation

The focus of our work is the study of the field Ksymm, the
compositum of all finite Galois extensions of a field K with
Galois group a symmetric group.
For K = Q we can describe explicitly the groups
Gal(Q̃/Qsymm) and Gal(Qsymm/Q).
Moreover, the theory Th(Qsymm) of Qsymm in the first order
language of rings is primitive recursively decidable.
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Properties of the base field

Remark 1
We need only the following properties of Q:

Q is Hilbertian, i.e. the following holds: If f ∈ Q[X ,Y ] is an
irreducible polynomial, separable, monic, and of degree at
least 2 in Y , then there is x ∈ Q such that f (x ,Y ) ∈ Q[Y ] is
irreducible [FrJ08, Prop. 13.2.2].
Q is countable.
charQ 6= 2.

All infinite fields (of characteristic 6= 2) which are finitely
generated over their prime fields have these properties.
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Subdirect product of symmetric groups

Remark 2
Let K be a field and Li/K be Galois extensions with
Gal(Li/K ) = Sni . Let L = L1 · · · Lr . Then

Gal(L/K ) ↪→
r∏

i=1

Gal(Li/K )

is a subdirect product of symmetric groups.
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Subdirect product of symmetric groups

Definition (Birkhoff 1944)
A finite group G is a subdirect product of symmetric groups
(G ∈ F = Fsymm), if there is an embedding

(1) G ↪→ S =
r∏

i=1

Sni with pri(G) = Sni

We call such a presentation minimal, if r is minimal and |S| is
minimal. Such a minimal presentation is (up to reordering the
factors) unique.
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Minimal normal subgroup of Sn

Proposition
Let 1 6= G ∈ F and (1) minimal. Then Gi = G ∩Sni is 6= 1 and
normal in G and Sni . So

Gi ≥ A(ni ) =


S2 if ni = 2
V4 if ni = 4
Ani otherwise

 =
minimal normal subgroup
of Sni

Here V4 = {(1), (12)(34), (13)(24), (14)(23)} is the Klein
four-group.

Hence S ≥ G ≥ A =
r∏

i=1

A(ni ) with S/A = Su
2 ×Sv

3 .
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What and why
The formation F of subdirect products of symmetric groups
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Structure of G ∈ F

Corollary

G = H n A , H = H2 n H3

where H2 and H3 are the elementary abelian p-Sylow
subgroups of H for p = 2 and p = 3, respectively.
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Formation

Definition
A non empty class F of finite groups is called a formation if the
following holds:

N E G ∈ F =⇒ G/N ∈ F

G/N1,G/N2 ∈ F =⇒ G/(N1 ∩ N2) ∈ F

Proposition
F = Fsymm is a formation, the smallest formation containing all
symmetric groups.
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What and why
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Proof

Step 1
F is closed under fiber products:

G/N1 ↪→
∏

i Sni , G/N2 ↪→
∏

j Smj

⇒ G/(N1 ∩ N2) ↪→
∏

i Sni ×
∏

j Smj

Step 2
F is closed under taking quotients.
Sketch of proof: It is enough to assume N is minimal.
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Lemma

Lemma
Let G ∈ F , say G ≤

∏
i∈I Sni . Then a minimal normal subgroup

N of G is of the following form:
(i) ∃i0 ∈ I : N = A(ni0

) , or

(ii) ∃J ⊆ I with |J| = s > 1, and ∃m : 2 ≤ m ≤ 4 such that
nj = m for j ∈ J and

N = {(α, . . . , α) ∈ As
(m) |α ∈ A(m)}

up to an automorphism of S.
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What and why
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Free pro-F -groups: A theorem of Iwasawa (group theory)

Proof of the Lemma

Proof
N minimal, so Ni := pri(N) = 1 or = A(ni ).
Let J = {i ∈ I |Ni 6= 1}. |J| = 1 is case (i).

Let |J| > 1. For j ∈ J we have prj : N
∼=−→ Nj since

N ∩ Ker(prj) = 1. So all nj = m and N has the above form,
up to an automorphism of S.
If m > 4, then Am is not abelian, so N is not normal in A,
so not in G.
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Use of the lemma

Proof that G/N is a subdirect product of symmetric groups

In case (i) we have G/N ↪→
∏

i 6=i0 Sni × (Sni0
/A(ni0

)) and

Sgn : Sn → Sn/A(n) =


S3 if n = 4
S1 if n = 2
S2 otherwise


Moreover, Sm/A(m) = AutA(m) for m ≤ 4.
In case (ii) we assume J = I. The normalizer of N in S is

{(α1, . . . , αs) ∈ Ss
m |Sgnα1 = · · · = Sgnαs} = G .

Then G = M n N with M = {αα ∈ G |α1 ∈ Sm−1}, so
G/N ↪→ Sm−1 ×Ss−1

m .
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A stronger result

Proposition (Geyer, Jarden, R. 2019) [GJR19, Prop. 4.4]
If N is a normal subgroup of some G ∈ Fsymm, then N has a
complement M in G, i.e. M ∩ N = 1 and MN = G. Moreover,
G/N ∼= M ∈ Fsymm.
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Roots of polynomials in Qsymm

Corollary (Geyer, Jarden, R. 2019) [GJR19, Lemma 8.1]

We can effectively check whether a polynomial f in Q[X ] has a
root in Qsymm. Thus, the set of monic polynomials in Q[X ] that
have a root in Qsymm is primitive recursive.

Proof
We can effectively decompose f over Q into a product of
irreducible polynomials. Thus, we can assume that f is
irreducible in Q[X ] and effectively construct the splitting field N
of f over Q. Moreover, we can effectively find all symmetric
extensions L1, . . . ,Lr of Q in N and check whether N =

∏r
i=1 Li

which is equivalent to N ⊂ Qsymm since then Gal(N/Q) is a
quotient of some G ∈ Fsymm, hence in Fsymm.
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The embedding property

Definition
Let K be a field with absolute Galois group
Gal(K ) = Gal(Ksep/K ) and F be a formation of finite groups.
We say: K has the embedding property with respect to F , if
every embedding problem

(2) Gal(K )

β
��

G α // Ḡ

with epimorphisms α and β and G ∈ F has a proper solution,
i.e. there is an epimorphism γ : Gal(K )→ G with β = α ◦ γ.
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Q has the embedding property with respect to Fsymm

Theorem
The field Q (or any Hilbertian field with char 6= 2) has the
embedding property with respect to Fsymm.

Example instead of proof

Put G = {(σ, τ) ∈ S5 ×S6 | sgnσ = sgn τ} and Ḡ = S6 and let
α : G→ Ḡ be the second projection. So Kerα = A5. There are
many realizations β : Gal(Q)→ Ḡ of S6 as Gal(N/Q). Let
L = Q(

√
d) be the fixed field of A6 in N. Now we use a theorem

of Brink.
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A theorem of Brink

Lemma [Brink 2004]
Let n ≥ 3 be an integer, let K be a Hilbertian field with
char K 6= 2, let L/K be a quadratic extension and P/K be an
algebraic extension with L 6⊆ P. Then there are extensions M/L
with Gal(M/K ) = Sn and M ∩ P = K .
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Solving the embedding problem of the example

Diagram
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which gives Gal(MN/K ) = G and solves the embedding
problem (2).
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Corollary

Corollary
Any G ∈ Fsymm is a Galois group over Q.
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The formation F of subdirect products of symmetric groups
The embedding property: Realization of G ∈ F as a Galois group
Free pro-F -groups: A theorem of Iwasawa (group theory)

Definition of a free pro-F-group

Definition
Let F be a formation of finite groups.
(a) A pro-F-group G is a projective limit of groups in F , i.e. a

profinite group whose finite quotient groups are in F :
Im(G) ⊆ F .

(b) The free pro-F-group F̂n(F) on n generators x1, . . . , xn
is a pro-F-group, (topol.) generated by X = {x1, . . . , xn}
with the following universal property:

Let G be a pro-F-group and ϕ : X → G be a map with
G = 〈ϕ(X )〉. Then ϕ has a unique extension
ϕ̂ : F̂n(F)→ G which is an epimorphism.

(c) “Similarly” one defines the free pro-F-group F̂ω(F) with
countably many generators.
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Small profinite groups

Definition
A profinite group G is small if for any n there are only finitely
many normal subgroups of index n.
Example: Every finitely generated profinite group is small.

Facts
1. Let H,G be profinite groups with Im(H) = Im(G). If H is

small we have H ∼= G.
2. G ∼= F̂n(F)⇐⇒ Im(G) = {A ∈ F |A has n generators}
3. Im(F̂ω(F)) = F . But for F = {abelian p-groups} we have

G =
∏

n

Cpn 6∼= F̂ω(F) =
∏

n

Ẑp and Im(G) = F .
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The embedding property: Realization of G ∈ F as a Galois group
Free pro-F -groups: A theorem of Iwasawa (group theory)

The embedding property of a pro-F group

Definition
A profinite group G has the embedding property, if to
epimorphisms α : H → H̄ and β : G→ H̄ with H ∈ Im(G) there
is an epimorphism γ : G→ H with β = α ◦ γ.

Example

The groups F̂n(F) and F̂ω(F) have the embedding property, the
Galois group Gal(Qsymm/Q) too.
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A theorem of Iwasawa

Proposition (Iwasawa) [FrJ08, Lemma 24.4.7]
Let H,G be profinite groups with countably many generators
and the embedding property. Then

Im(G) = Im(H) =⇒ G ∼= H .

Corollary 1 [FrJ08, Thm. 24.8.1]

If G is an ω-generated pro-F-group, then G ∼= F̂ω(F) iff
Im(G) = F and G has the embedding property.

Corollary 2 (Geyer, Jarden, R. 2019) [GJR19, Thm. 7.5]

Gal(Qsymm/Q) ∼= F̂ω(Fsymm)
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Determination of fields by Galois groups

Theorem [Neukirch 1970]
Let K and L be finite extensions of Q. Then

G(K ) ∼= G(L) =⇒ K ∼= L

Remark 1
The maximal solvable quotient groups Gal(Ksolv/K ) determine
the number field K up to conjugation.

Remark 2 [Uchida 1977]
The same holds for global fields in all characteristics.

Remark 3 (Geyer, Jarden, R. 2019) [GJR19, Thm. 7.5]

Gal(Ksymm/K ) ∼= F̂ω(Fsymm) is the same for all number fields K .
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Twaddling

Twaddling

By van der Waerden [1933] asymptotically 100% of all f ∈ Z[X ]
of degree n have Galois group Sn over Q. They form the plebs,
the common folk, the lower class of polynomials, compared to
the polynomials with solvable Galois group which are full of
arithmetical significance, the aristocratic upper class. But the
highest class with the most arithmetical properties are the
polynomials with abelian Galois group as class field theory and
the following theorem indicate.
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The formation of all finite solvable groups

Theorem [Iwasawa 1953]
Let Fsolv be the formation of all finite solvable groups. Then
Gal(Qsolv/Qab) ∼= F̂ω(Fsolv).

Idea of proof

Let G = Gal(Qsolv/Qab). The absolute Galois group Gal(Qab) of
Qab = Q(µµ∞) has cohomological dimension 1 by class field
theory. Therefore every embedding problem over Qab has a
weak solution. Moreover Qab is Hilbertian. Therefore every
minimal split Fsolv-embedding problem (where the kernel is
elementary abelian) is solvable. This implies by
group-theoretical considerations that every Fsolv-embedding
problem is solvable. Therefore Im(G) = Fsolv and G has the
embedding property. This implies G ∼= F̂ω(Fsolv).
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A conjecture of Shafarevich

Remark
This holds for any number field instead of K . If K is a global
field of prime characteristic, e.g. K = Fp(t), then [Pop 1995]
showed more: Gal(Kab) ∼= F̂ω .

Conjecture [Shafarevich]

Gal(Qab) ∼= F̂ω .
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Let K be a countable Hilbertian field, e.g. K = Q.
(a) Ksymm is Hilbertian.

Follows from Haran’s diamond theorem [1999]. As a
consequence we get an infinite sequence

Q ⊂ Qsymm ⊂ (Qsymm)symm ⊂ . . . .
(b) Ksymm is PAC, i.e. every geometrically integral variety over

Ksymm has a Ksymm-rational point.
By [Fried-Jarden, 1978] using the stability of fields.

(c) Gal(Ksymm) ∼= F̂ω .
This follows from (a),(b) and the countability: [Fried-
Völklein 1992] in char. 0, [Pop 1996] in general.
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Primitive recursive decidability lemma

Definition
A field K has elimination theory if every finitely generated
presented extension L of K has an effective algorithm for
factoring each polynomial in L[X ] of positive degree into a
product of irreducible factors.

Lemma (Jarden-Shlapentokh, 2017) [JaS17]
Let K be a presented field with elimination theory. Let M be a
perfect algebraic extension of K such that M is PAC, Gal(M)
has the embedding property, and Im(Gal(M)) is a primitive
recursive subset of the set of all finite groups. Further, suppose
the set Root(M/K ) of monic polynomials in K [X ] that have a
root in M is primitive recursive. Then, Th(M) is primitive
recursive.
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Primitive recursive decidability

Proposition (Geyer, Jarden, R. 2019) [GJR19, Thm. 8.5(b)]
There is a primitively recursive procedure to decide which
sentences in the first-order language of rings are true in Qsymm
and which not.

Remark
This is true for all countable Hilbertian fields K , even if we add
names of the elements of K to the language, as long as
char K = 0.
If char K 6= 0, then all is true if we replace Ksymm by its perfect
hull Ksymm,ins.
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Undecidability of Q(2)

Theorem (Martinez-Ranero, Utreras, Videla 2020) [MUV20]

The first order theory of Q(2), the compositum of all quadratic
extensions of Q, is undecidable.

Remark

For a positive integer m, let Q(m)
symm be the compositum of all

Galois extensions of Q with Galois groups Sn for some n ≥ m.
In particular, Qsymm = Q(2)

symm. Also, Q(m+1)
symm ⊆ Q(m)

symm.

Th(Q(m)
symm) is primitive recursively decidable [GJR19, Example

9.1].⋂
m Q(m)

symm = Q(2) [GJR19, Prop. 9.3].
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The ring of integers of Qsymm and of Fp(t)symm

Theorem (Jarden and R. 2018) [JaR18, Cor. 2.5]

Let K be either Q or Fp(t) and let O be either Z or Fp[t ],
respectively. Let Osymm (resp., Osymm,ins) be the integral closure
of O in Ksymm (resp. Ksymm,ins). Then, Ksymm is PAC over Osymm,
i.e. for each absolutely irreducible polynomial f ∈ Ksymm[T ,X ]
s.t. ∂f

∂X 6= 0 there are infinitely many (a,b) ∈ Osymm × Ksymm with
f (a,b) = 0. Also, Ksymm,ins is PAC over Osymm,ins.

Ingredients of the proof

[GJR17a] applies Konrad Neumann’s theorem on the
“symmetric stabilization of function fields over K " [Neu98].
[GJR17b] relies on a work of Moret-Bailly on Skolem problems
[MoB89].
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Primitive recursive decidability of Osymm,ins

Lemma (Jarden-R., 2020) [JaR20, Lemma 4.2]
Let M be a perfect algebraic extension of K s.t. M is PAC over
its ring of integers OM , Gal(M) has the embedding property,
Im(Gal(M)) is primitive recursive, and Root(M/K ) is primitive
recursive. Then, Th(OM) is primitive recursively decidable.

Ingredients of the proof

[Raz19] that uses v.d. Dries elimination of quantifiers procedure
for the ring of all algebraic integers [Dri88] combined with a
generalization of the Galois stratification of [FrJ08, §30].

Theorem (Jarden-R. 2020) [JaR20, Thm. 4.3]

Th(Osymm,ins) is primitive recursive.
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