Totally geodesic surfaces in twist knot complements

Rebekah Palmer Temple University

joint with Khanh Le

MSRI Postdoc Seminar 17 Sep 2020

- Motivation
- Main results
- History
- Twist knots
- Boundary slopes
- Corollaries

A totally geodesic surface is

surface Σ geodesics coincide 3-manifold M maximal Fuchsian $\pi_1(\Sigma)$ finite coarea \subset Kleinian $\pi_1(M)$ Such surfaces lift to hyperplanes in \mathbb{H}^3 . Use this to find surfaces!

A totally geodesic surface is

surface Σ geodesics coincide 3-manifold M maximal Fuchsian $\pi_1(\Sigma)$ finite coarea \subset Kleinian $\pi_1(M)$

Such surfaces lift to hyperplanes in \mathbb{H}^3 . Use this to find surfaces!

Thrice-punctured sphere in twist knot complement is totally geodesic (Adams, '85)

Question: Is this unique?

Figure: Thrice-puncture sphere N for $5₂$

A totally geodesic surface is

surface Σ geodesics coincide 3-manifold M maximal Fuchsian $\pi_1(\Sigma)$ finite coarea \subset Kleinian $\pi_1(M)$

Such surfaces lift to hyperplanes in \mathbb{H}^3 . Use this to find surfaces!

Thrice-punctured sphere in twist knot complement is totally geodesic (Adams, '85)

Question: Is this unique? Answer: Yes, for infinitely many! (Le-P)

Figure: Thrice-puncture sphere N for $5₂$

Theorem (Le–P)

There are infinitely many twist knot complements containing a unique totally geodesic surface.

which combines with covering space theory to get

Theorem (Le–P)

There exist infinitely many non-commensurable hyperbolic 3-manifolds that contain exactly k totally geodesic surfaces for any positive integer k.

Weeks manifold

Dehn surgery on Whitehead Link arithmetic

Knot complement 820

(Calegari, '06)

knot complement

nonarithmetic

Theorem (Fisher–Lafont–Miller–Stover, '18)

There exist infinitely many non-commensurable hyperbolic 3-manifolds with finitely many totally geodesic surfaces.

Gromov–Piatetski-Shapiro construction

glue along shared totally geodesic surface

Number of totally geodesic surfaces is nonzero and bounded, but not explicitly known.

Theorem (Reid, '91)

An arithmetic hyperbolic 3-manifold admiting one totally geodesic surface admits infinitely many.

Fact: the figure-8 is the *only* arithmetic knot.

Theorem (Bader–Fisher–Miller–Stover, '19)

If M is a hyperbolic 3-manifold containing infinitely many totally geodesic surfaces, then M is arithmetic.

> To find finitely many totally geodesic surfaces, look to nonarithmetic manifolds!

Figure-8 is a *twist knot* with $j=2$ half twists. General \mathcal{K}_j :

Longitude ℓ vanishes in homology with respect to meridian a

Twist knot group is generated by two generators and a conjugation relation (Riley, '72):

$$
\Gamma_j = \pi_1 \left(S^3 \setminus K_j \right) = \langle a, b \mid aw_j = w_j b \rangle
$$

There's a representation $\Gamma \hookrightarrow PSL_2(\mathbb{C})$ by mapping two meridians to parabolics (Riley, '72):

$$
a \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad b \mapsto \begin{pmatrix} 1 & 0 \\ z & 1 \end{pmatrix}
$$

where z is a root of a polynomial from satisfying the group relation.

For a twist knot \mathcal{K}_{j} , this polynomial is irreducible of degree j and has root z_i (Hoste–Shanahan, '01).

With this Kleinian representation of $\mathsf{\Gamma}_j$, look at the *trace field*

 $\mathbb{Q}(\{\text{tr }\gamma \mid \gamma \in \Gamma\}) = \mathbb{Q}(z_i)$

The degree of this extension is precisely *because the polynomial* is irreducible.

Trace field coincides here with cusp set: the points in $\hat{\mathbb{C}}$ that identify to the cusp under Γ_i are precisely $\mathbb{Q}(z_i) \cup \{\infty\}$.

Helpful conditions for Γ:

- Γ has integral traces
- Q(tr Γ) is of odd degree over Q and contains no proper real subfield other than Q

Proposition (Reid, '91)

Let Γ satisfy the above two conditions. Then Γ contains no cocompact Fuchsian groups, and tr(Δ) $\subset \mathbb{Z}$ for any Fuchsian subgroup ∆.

This is immediately satisfed by j odd prime, so takeaway:

- traces are integers
- no closed surfaces look to cusps!

(for convenience, no more *)*

Thrice-punctured sphere N is totally geodesic. We examine any other totally geodesic surface Σ by how it intersects N.

Lemma (Fisher–Lafont–Miller–Stover, '18)

Any connected component of any two distinct properly immersed totally geodesic surfaces in M is either a closed geodesic or a cusp-to-cusp geodesic.

So if we start at a cusp point, we want to end at a cusp point.

Consider a totally geodesic surface Σ in M and choose a lift $\widetilde{\Sigma}$. Look at two parabolic elements of Stab(Σ).

Requirements:

- find cusp point θ
- determine conjugating word $\gamma \in \Gamma$
- \bullet check *trace condition* tr $(a^p \ell^q \gamma a^m \ell^n \gamma^{-1}) \in \mathbb{Z}$

Let Σ be any cusped totally geodesic surface in a twist knot complement with appropriate number of half twists. Then the complete set of boundary slopes of Σ is $\{1/0, -2\}$.

Idea: look at every possible way \sum might intersect the lifts of N. Boundary slopes of N are 1/0 and -2 . Let \sum have slope p/q .

Let Σ be any cusped totally geodesic surface in a twist knot complement with appropriate number of half twists. Then the complete set of boundary slopes of Σ is $\{1/0, -2\}$.

Idea: look at every possible way $\widetilde{\Sigma}$ might intersect the lifts of N. Boundary slopes of N are 1/0 and -2 . Let \sum have slope p/q .

Let Σ be any cusped totally geodesic surface in a twist knot complement with appropriate number of half twists. Then the complete set of boundary slopes of Σ is $\{1/0, -2\}$.

Idea: look at every possible way $\widetilde{\Sigma}$ might intersect the lifts of N. Boundary slopes of N are 1/0 and -2 . Let \sum have slope p/q .

0

Let Σ be any cusped totally geodesic surface in a twist knot complement with appropriate number of half twists. Then the complete set of boundary slopes of Σ is $\{1/0, -2\}$.

Idea: look at every possible way $\widetilde{\Sigma}$ might intersect the lifts of N. Boundary slopes of N are 1/0 and -2 . Let \sum have slope p/q .

Let Σ be any cusped totally geodesic surface in a twist knot complement with appropriate number of half twists. Then the complete set of boundary slopes of Σ is $\{1/0, -2\}$.

Idea: look at every possible way \sum might intersect the lifts of N. Boundary slopes of N are 1/0 and -2 . Let \sum have slope p/q .

Diagram of figure-8 gives a second totally geodesic surface:

Furthermore: Every rational number occurs as a boundary slope for some totally geodesic surface in the figure-8 knot complement.

Diagram of figure-8 gives a second totally geodesic surface:

Furthermore: Every rational number occurs as a boundary slope for some totally geodesic surface in the figure-8 knot complement.

Very different from the $\{1/0, -2\}$ in our nonarithmetic case!

A manifold is right-angled if it can be constructed by gluing together a set of polyhedra whose dihedral angles are all $\pi/2$.

Conjecture (Champanerkar–Kofman–Purcell)

There does not exist a right-angled knot.

True for all knots up to 11 crossings by volume techniques.

Lemma (Champanerkar–Kofman–Purcell, '19)

The faces of the right-angled polyhedra give rise to immersed totally geodesic surfaces.

Corollary

No twist knot with odd prime half twists is right-angled.

Let H be a hyperplane with boundary slope -2 at ∞ .

Stab (H) is a maximal Fuchsian subgroup containing $\mathsf{a}^{-2}\ell$ and a conjugate of b. These two parabolics generate a non-elementary subgroup; that is, no point in the boundary has finite orbit.

Proposition

The subgroup $Stab(H)$ in Γ is non-elementary maximal Fuchsian.

Corollary

The subgroup $Stab(H)$ in Γ has infinite coarea for all but finitely many H (up to conjugacy).

Let H be a hyperplane with boundary slope -2 at ∞ .

Stab (H) is a maximal Fuchsian subgroup containing $\mathsf{a}^{-2}\ell$ and a conjugate of b. These two parabolics generate a non-elementary subgroup; that is, no point in the boundary has finite orbit.

Proposition

The subgroup $Stab(H)$ in Γ is non-elementary maximal Fuchsian.

Corollary

The subgroup $Stab(H)$ in Γ has infinite coarea for all but finitely many H (up to conjugacy).

Comparison: In the arithmetic case, every non-elementary maximal Fuchsian subgroup has finite coarea.

Let H be a hyperplane with boundary slope -2 at ∞ .

Stab (H) is a maximal Fuchsian subgroup containing $\mathsf{a}^{-2}\ell$ and a conjugate of b. These two parabolics generate a non-elementary subgroup; that is, no point in the boundary has finite orbit.

Proposition

The subgroup $Stab(H)$ in Γ is non-elementary maximal Fuchsian.

Corollary

The subgroup $Stab(H)$ in Γ has infinite coarea for all but finitely many H (up to conjugacy).

Comparison: In the arithmetic case, every non-elementary maximal Fuchsian subgroup has finite coarea.

Stay tuned: for a family of twist knots, finite coarea occurs only when H is a lift of our favorite thrice-punctured sphere! Surfaces seem to appear by looking at consecutive tangent horospheres:

figure-8 knot complement 5_2 knot complement

Surfaces seem to appear by looking at consecutive tangent horospheres:

figure-8 knot complement 5_2 knot complement

Surfaces seem to appear by looking at consecutive tangent horospheres:

figure-8 knot complement 5_2 knot complement

