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General motivation

A totally geodesic surface is

surface Σ geodesics coincide 3-manifold M

maximal Fuchsian π1(Σ) finite coarea ⊂ Kleinian π1(M)

Such surfaces lift to hyperplanes in H3. Use this to find surfaces!

Figure: Thrice-puncture sphere N for 52

Thrice-punctured sphere in twist
knot complement is totally
geodesic (Adams, ’85)

Question: Is this unique?

Answer: Yes, for infinitely

many! (Le-P)
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Main results

Theorem (Le–P)

There are infinitely many twist knot complements containing a
unique totally geodesic surface.

which combines with covering space theory to get

Theorem (Le–P)

There exist infinitely many non-commensurable hyperbolic
3-manifolds that contain exactly k totally geodesic surfaces for any
positive integer k.



No totally geodesic surfaces

Weeks manifold

Dehn surgery on Whitehead Link

arithmetic

Knot complement 820

(Calegari, ’06)

knot complement

nonarithmetic



Finitely many totally geodesic surfaces (bounded)

Theorem (Fisher–Lafont–Miller–Stover, ’18)

There exist infinitely many non-commensurable hyperbolic
3-manifolds with finitely many totally geodesic surfaces.

Gromov–Piatetski-Shapiro construction

part of arithmetic M1 part of arithmetic M2

glue along shared totally geodesic surface

Number of totally geodesic surfaces is nonzero and bounded, but
not explicitly known.



Infinitely many totally geodesic surfaces

Theorem (Reid, ’91)

An arithmetic hyperbolic 3-manifold admiting one totally geodesic
surface admits infinitely many.

Fact: the figure-8 is the only arithmetic knot.

Theorem (Bader–Fisher–Miller–Stover, ’19)

If M is a hyperbolic 3-manifold containing infinitely many totally
geodesic surfaces, then M is arithmetic.

To find finitely many totally geodesic surfaces,

look to nonarithmetic manifolds!



Motivation for twist knots

Figure-8 is a twist knot with j = 2 half twists. General Kj :

Longitude ` vanishes
in homology with respect

to meridian a

︸ ︷︷ ︸
j half twists

Twist knot group is generated by two generators and a conjugation
relation (Riley, ’72):

Γj = π1
(
S3 \ Kj

)
= 〈a, b | awj = wjb〉



Presentations and representations

There’s a representation Γ ↪→ PSL2(C) by mapping two meridians
to parabolics (Riley, ’72):

a 7→
(

1 1
0 1

)
b 7→

(
1 0
z 1

)
where z is a root of a polynomial from satisfying the group relation.

For a twist knot Kj , this polynomial is irreducible of degree j and
has root zj (Hoste–Shanahan, ’01).



Trace field

With this Kleinian representation of Γj , look at the trace field

Q({tr γ | γ ∈ Γ}) = Q(zj)

The degree of this extension is precisely j because the polynomial
is irreducible.

Trace field coincides here with cusp set: the points in Ĉ that
identify to the cusp under Γj are precisely Q(zj) ∪ {∞}.



Trace field

Helpful conditions for Γ:

• Γ has integral traces

• Q(tr Γ) is of odd degree over Q and contains no proper real
subfield other than Q

Proposition (Reid, ’91)

Let Γ satisfy the above two conditions. Then Γ contains no
cocompact Fuchsian groups, and tr(∆) ⊂ Z for any Fuchsian
subgroup ∆.

This is immediately satisfed by j odd prime, so takeaway:

• traces are integers

• no closed surfaces — look to cusps!

(for convenience, no more j)



Intersecting hyperplanes

Thrice-punctured sphere N is totally geodesic. We examine any
other totally geodesic surface Σ by how it intersects N.

Lemma (Fisher–Lafont–Miller–Stover, ’18)

Any connected component of any two distinct properly immersed
totally geodesic surfaces in M is either a closed geodesic or a
cusp-to-cusp geodesic.

So if we start at a cusp point, we want to end at a cusp point.



Approaching the surface Σ

Consider a totally geodesic surface Σ in M and choose a lift Σ̃.

Look at two parabolic elements of Stab(Σ̃).

∂H3 = Ĉ
θ

Σ̃ Σ̃′

ap`q

γam`nγ−1

am`n

γ

•



Trace condition

Requirements:

• find cusp point θ

• determine conjugating word γ ∈ Γ

• check trace condition tr(ap`qγam`nγ−1) ∈ Z

C

a

`

view from ∞

Σ̃

p/q

θ•

Σ̃′

m/n

γ

θ

Σ̃ Σ̃′

ap`q

γam`nγ−1

am`n

γ

•



Boundary slopes

Lemma

Let Σ be any cusped totally geodesic surface in a twist knot
complement with appropriate number of half twists. Then the
complete set of boundary slopes of Σ is {1/0,−2}.

Idea: look at every possible way Σ̃ might intersect the lifts of N.

Boundary slopes of N are 1/0 and −2. Let Σ̃ have slope p/q.

H2
R

Ñ

Σ̃

Σ̃′

0

1

s/t

• H2
R is a lift of N

• Σ̃ ∩H2
R is cusp-to-cusp geodesic

• θ ∈ Q(z) ∩ R = Q
• either no γ and Σ̃′ exists

or nq = (2n + m)(2q + p) = 0
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Figure-8 knot complement

Diagram of figure-8 gives a second totally geodesic surface:

0

1

N has slopes 1/0, −2 N′ has slopes 1/0, 2 View from ∞ of lifts

Furthermore: Every rational number occurs as a boundary slope for
some totally geodesic surface in the figure-8 knot complement.

Very different from the {1/0,−2} in our nonarithmetic case!
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Corollary: right-angled knot complements

A manifold is right-angled if it can be constructed by gluing
together a set of polyhedra whose dihedral angles are all π/2.

Conjecture (Champanerkar–Kofman–Purcell)

There does not exist a right-angled knot.

True for all knots up to 11 crossings by volume techniques.

Lemma (Champanerkar–Kofman–Purcell, ’19)

The faces of the right-angled polyhedra give rise to immersed
totally geodesic surfaces.

Corollary

No twist knot with odd prime half twists is right-angled.



Corollary: non-elementary maximal Fuchsian subgroups

Let H be a hyperplane with boundary slope −2 at ∞.

Stab(H) is a maximal Fuchsian subgroup containing a−2` and a
conjugate of b. These two parabolics generate a non-elementary
subgroup; that is, no point in the boundary has finite orbit.

Proposition

The subgroup Stab(H) in Γ is non-elementary
maximal Fuchsian.

Corollary

The subgroup Stab(H) in Γ has infinite coarea
for all but finitely many H (up to conjugacy).

Comparison: In the arithmetic case, every non-elementary maximal
Fuchsian subgroup has finite coarea.

Stay tuned: for a family of twist knots, finite coarea occurs
only when H is a lift of our favorite thrice-punctured sphere!

H2
R

H

0

1

s/t
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SnapPy and horosphere tangency

Surfaces seem to appear by looking at consecutive tangent
horospheres:

figure-8 knot complement 52 knot complement
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