Totally Geodesic Surfaces in Twist Knot Complements

Khanh Le Temple University

joint with Rebekah Palmer

イロト イ部 トイモト イモト

Results

Theorem (L., Palmer)

There exists infinitely many non-commensurable hyperbolic 3-manifolds that contain exactly k totally geodesic surfaces for any positive integer k.

- we prove the theorem by finding infinitely many non-commensurable hyperbolic 3-manifolds each containing exactly 1 totally geodesic surface
- ...and by using covering tricks to produce examples for all $k > 1$.

イロト イ押ト イヨト イヨト

Results

Theorem (L., Palmer)

For any odd prime j, the complement $M_j:=S^3\smallsetminus K_j$ contains a unique totally geodesic surface.

Figure: The twist knot K_i with j half-twists

メロトメ 伊 トメ ミトメ ミト

Figure: The 3-punctured sphere N in M_i

$$
\bullet \ \Gamma_j := \pi_1(M_j) = \langle a, b | w_j a w_j^{-1} = b \rangle
$$

活

メロメ メタメ メミメ メミメ

Figure: The 3-punctured sphere N in M_i

- $\Gamma_j := \pi_1(M_j) = \langle a,b|$ w $_j$ aw $_j^{-1} = b \rangle$
- \bullet M_j admits a complete finite-volume hyperbolic metric for $j \ge 2$ given by $ρ: \Gamma_i \rightarrow SL_2(\mathbb{C})$: \mathcal{L} and \mathcal{L}

$$
a \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 1 & 0 \\ z_j & 1 \end{pmatrix}
$$

where z_j is an algebraic integer.

Figure: The 3-punctured sphere N in M_i

- $\Gamma_j := \pi_1(M_j) = \langle a,b|$ w $_j$ aw $_j^{-1} = b \rangle$
- \bullet M_i admits a complete finite-volume hyperbolic metric for $j \geq 2$ given by $ρ: \Gamma_i \rightarrow SL_2(\mathbb{C})$: \mathcal{L} and \mathcal{L}

$$
a \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 1 & 0 \\ z_j & 1 \end{pmatrix}
$$

where z_j is an algebraic integer.

• (Adams): N is a totally geodesic surface.

Figure: The 3-punctured sphere N in M_i

- $\Gamma_j := \pi_1(M_j) = \langle a,b|$ w $_j$ aw $_j^{-1} = b \rangle$
- \bullet M_i admits a complete finite-volume hyperbolic metric for $j \geq 2$ given by $ρ: \Gamma_i \rightarrow SL_2(\mathbb{C})$:

$$
a \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 1 & 0 \\ z_j & 1 \end{pmatrix}
$$

where z_j is an algebraic integer.

- (Adams): N is a totally geodesic surface.
- \bullet (Hoste Shanahan): $[\mathbb{Q}(z_i) : \mathbb{Q}] = i$

Proposition (Reid)

Let Γ be a non-cocompact Kleinian group of finite covolume that satisfies the following two conditions:

- \odot Q(tr Γ) is of odd degree over \odot and contains no proper real subfield other than Q.
- Γ has integral traces.

Then Γ contains no cocompact Fuchsian subgroups.

Corollary (Reid)

M^j does not contain any closed totally geodesic surface for any odd prime j.

Remark

Proposition (Reid)

Let Γ be a non-cocompact Kleinian group of finite covolume that satisfies the following two conditions:

- \odot Q(tr Γ) is of odd degree over \odot and contains no proper real subfield other than Q.
- Γ has integral traces.

Then Γ contains no cocompact Fuchsian subgroups.

Corollary (Reid)

M^j does not contain any closed totally geodesic surface for any odd prime j.

Remark

 \bullet In fact, we prove uniqueness of N in M_i under these two conditions.

Proposition (Reid)

Let Γ be a non-cocompact Kleinian group of finite covolume that satisfies the following two conditions:

- \odot Q(tr Γ) is of odd degree over \odot and contains no proper real subfield other than Q.
- Γ has integral traces.

Then Γ contains no cocompact Fuchsian subgroups.

Corollary (Reid)

M^j does not contain any closed totally geodesic surface for any odd prime j.

Remark

- \bullet In fact, we prove uniqueness of N in M_i under these two conditions.
- Using Magma, we verify that the first condition holds for all $2 \le j \le 99$.

Proposition (Reid)

Let Γ be a non-cocompact Kleinian group of finite covolume that satisfies the following two conditions:

- \odot Q(tr Γ) is of odd degree over \odot and contains no proper real subfield other than Q.
- Γ has integral traces.

Then Γ contains no cocompact Fuchsian subgroups.

Corollary (Reid)

M^j does not contain any closed totally geodesic surface for any odd prime j.

Remark

- \bullet In fact, we prove uniqueness of N in M_i under these two conditions.
- Using Magma, we verify that the first condition holds for all $2 \le j \le 99$.
- This proposition gives us a convenient way to rule out closed surfaces.

Assuming j is an odd prime and Σ is a totally geodesic surface in M_j :

 \bullet Σ must be a cusped surface.

э

イロト イ部 トイ ヨ トイ ヨ トー

Assuming j is an odd prime and Σ is a totally geodesic surface in M_j :

- \bullet Σ must be a cusped surface.
- $tr(\pi_1(\Sigma)) \subset \mathbb{R} \cap \mathbb{Q}(z_i) = \mathbb{Q}$. Integral traces $\Rightarrow tr(\pi_1(\Sigma)) \subset \mathbb{Z}$.

目

メロメメ 御 メメ きょく ミメー

メロトメ 御 トメ 君 トメ 君 トッ 君

メロトメ 御 トメ 君 トメ 君 トッ 君

メロトメ 御 トメ 君 トメ 君 トッ 君

• There exists $\gamma \in \Gamma$ such that $\gamma(\infty) = \theta_{-1}$

重

メロメメ 御 メメ きょくきょう

- There exists $\gamma \in \Gamma$ such that $\gamma(\infty) = \theta_{-1}$
- $\mathop{\mathsf{tr}}(\gamma a^m \ell^n \gamma^{-1} a^p \ell^q) \in \mathbb{Z}$

重

メロメメ 御 メメ きょくきょう

Assuming j is an odd prime and Σ is a totally geodesic surface in M_j :

- \bullet Σ must be a cusped surface.
- tr($\pi_1(\Sigma)$) ⊂ R ∩ Q(z_i) = Q. Integral traces \Rightarrow tr($\pi_1(\Sigma)$) ⊂ Z.
- The trace condition holds:

$$
\operatorname{tr}(\gamma a^m \ell^n \gamma^{-1} a^p \ell^q) = \delta^2(nq\tau^2 + (mq + np)\tau + mp) \in \mathbb{Z}
$$

where τ is the cusp shape and

$$
\gamma = \begin{pmatrix} \alpha & \beta \\ \delta & \eta \end{pmatrix}
$$

To execute this idea, we need...

- ...to find cusp-to-cusp geodesics θ .
- ...to find $\gamma \in \Gamma_i$ such that $\gamma(\infty) = \theta_-.$

Geometric Observation

Lemma (Fisher, Lafont, Miller, Stover)

Let M be a complete finite-volume hyperbolic 3-manifold. Let Σ_1 , Σ_2 are two distinct properly immersed totally geodesic surfaces with non-empty intersection. Then each component of $\Sigma_1 \cap \Sigma_2$ is either a closed geodesic or a cusp-to-cusp geodesic.

The key is that:

• The intersections are all transverse.

Geometric Observation

Lemma (Fisher, Lafont, Miller, Stover)

Let M be a complete finite-volume hyperbolic 3-manifold. Let Σ_1 , Σ_2 are two distinct properly immersed totally geodesic surfaces with non-empty intersection. Then each component of $\Sigma_1 \cap \Sigma_2$ is either a closed geodesic or a cusp-to-cusp geodesic.

The key is that:

- The intersections are all transverse.
- All components in the intersection must be properly immersed, complete, 1 dimensional submanifolds.

Geometric Observation

Lemma (Fisher, Lafont, Miller, Stover)

Let M be a complete finite-volume hyperbolic 3-manifold. Let Σ_1 , Σ_2 are two distinct properly immersed totally geodesic surfaces with non-empty intersection. Then each component of $\Sigma_1 \cap \Sigma_2$ is either a closed geodesic or a cusp-to-cusp geodesic.

The key is that:

- The intersections are all transverse.
- All components in the intersection must be properly immersed, complete, 1 dimensional submanifolds.
- By looking at intersections of lifts of totally geodesic surfaces to \mathbb{H}^3 , we can find cusp-to-cusp geodesics.

イロト イ押ト イヨト イヨト

Boundary Slope Restrictions

Lemma

Let j be an odd prime and Σ be any (cusped) totally geodesics surface in M_j . Then the complete set of boundary slopes of Σ is $\{1/0, -2\}$ (up to multiplicity).

 $\bullet \Sigma = N$: Knot diagrams $\Rightarrow \rho(\pi_1(N)) = \langle a, y \rangle$ where

- The boundary slopes restriction implies that any totally geodesic surface Σ has a lift $H_{\mathsf{s}/\mathsf{t}}.$
- In fact, the slope at s/t of $H_{s/t}$ is $1/0$.
- Using $\pi_1(N)$, we can find $\zeta \in \Gamma_j$ mapping s/t to ∞ .

K ロ ▶ K 個 ▶ K ミ ▶ K 듣 ▶

- Moving $H_{s/t}$ by $\zeta \in \Gamma_j$ mapping s/t to ∞ .
- We get a cusp-to-cusp geodesic $\theta = (\theta_-, \infty)$ where $\theta_- \in \mathbb{Q}(z_i)$.
- Therefore, there exists

$$
\gamma = \begin{pmatrix} \alpha & \beta \\ \delta & \eta \end{pmatrix} \in \Gamma_j \leq \mathsf{SL}_2(\mathbb{Z}[z_j])
$$

K ロト K 御 ト K 君 ト K 君 K

that maps $\theta_$ to ∞ .

Goal: Finding algebraic conditions on entries of γ and check det(γ) = 1.

• We have $\gamma(\theta_-) = \infty$. Therefore,

$$
\delta\theta_-+\eta=0
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Goal: Finding algebraic conditions on entries of γ and check det(γ) = 1.

• We have $\gamma(\theta_-) = \infty$. Therefore,

$\delta\theta_- + \eta = 0$

• The slope of $H_{s/t}$ at $\theta_-\$ is either $1/0$ or -2 . Suppose that it is -2 . Applying the trace condition to the cusp-to-cusp geodesic θ , we get:

 $\delta = \pm tz_j \in \mathbb{Z}[z_j]$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Goal: Finding algebraic conditions on entries of γ and check det(γ) = 1.

• We have $\gamma(\theta_-) = \infty$. Therefore,

$\delta\theta_- + \eta = 0$

• The slope of $H_{s/t}$ at $\theta_-\$ is either $1/0$ or -2 . Suppose that it is -2 . Applying the trace condition to the cusp-to-cusp geodesic θ , we get:

 $\delta = \pm tz_j \in \mathbb{Z}[z_j]$

• Therefore, we also get:

 $\eta = \pm (s z_j + 4 s' + 2 t) \in \mathbb{Z}[z_j]$

K ロト K 御 ト K 君 ト K 君 K

• Move the $H_{s/t}$ by γ

イロト イ部 トイモト イモト

€

- Move the $H_{s/t}$ by γ
- The point σ is a cusp point and a rational number. Therefore,

$$
\frac{\alpha}{\delta}+r(2-\tau)\in\mathbb{Q}
$$

イロト イ部 トメ ヨ トメ ヨ トー

for some $r \in \mathbb{R}$.

- Move the $H_{s/t}$ by γ
- The point σ is a cusp point and a rational number. Therefore,

$$
\frac{\alpha}{\delta}+r(2-\tau)\in\mathbb{Q}
$$

for some $r \in \mathbb{R}$.

 \bullet Solving for α we get

 $\alpha = \alpha_1 z_i + \alpha_0$

イロト イ部 トメ ヨ トメ ヨ トー

for $\alpha_i \in \mathbb{Z}$.

• det(γ) = 1 implies that:

$$
(\alpha_1z_j+\alpha_0)(sz_j+4s'+2t)-tz_j\beta=\pm 1
$$

活

メロメメ 倒 メメ きょくきょう

• det(γ) = 1 implies that:

$$
(\alpha_1z_j+\alpha_0)(sz_j+4s'+2t)-tz_j\beta=\pm 1
$$

• Comparing the coefficients of z on both sides modulo t , we get

$$
\alpha_1 s = 0 \mod t, \quad \alpha_0 s = 0 \mod t
$$

Since gcd(s, t) = 1, $\alpha_i = 0$ mod t. This contradicts the determinant equation.

K ロ > K 個 > K 경 > K 경 > 시 경

• det(γ) = 1 implies that:

$$
(\alpha_1z_j+\alpha_0)(sz_j+4s'+2t)-tz_j\beta=\pm 1
$$

• Comparing the coefficients of z on both sides modulo t , we get

 α_1 s = 0 mod t, α_0 s = 0 mod t

Since gcd(s, t) = 1, $\alpha_i = 0$ mod t. This contradicts the determinant equation.

• There is no such $\gamma \in \Gamma$, and so θ is not a cusp-to-cusp geodesic. This contradicts the geometric observation that totally geodesic surface intersects along cusp-to-cusp geodesics. Therefore, $H_{s/t}$ does not cover a totally geodesic surface in M_j .

K ロ X K @ X K 호 X K 호 X (호 X)

• det(γ) = 1 implies that:

$$
(\alpha_1z_j+\alpha_0)(sz_j+4s'+2t)-tz_j\beta=\pm 1
$$

• Comparing the coefficients of z on both sides modulo t , we get

 α_1 s = 0 mod t, α_0 s = 0 mod t

Since gcd(s, t) = 1, $\alpha_i = 0$ mod t. This contradicts the determinant equation.

- There is no such $\gamma \in \Gamma$, and so θ is not a cusp-to-cusp geodesic. This contradicts the geometric observation that totally geodesic surface intersects along cusp-to-cusp geodesics. Therefore, $H_{s/t}$ does not cover a totally geodesic surface in M_j .
- The proof proceed similarly in the second case.

K ロ X K @ X K 호 X K 호 X (호 X)

Thank you!

重

メロトメ 倒 トメ ミトメ ミト

Lifting N

- Consider the cover $\hat{M}_{j,n}$ corresponding to the kernel of a surjective homomorphism $\phi_n : \Gamma_i \to D_n$ to the dihedral group of order 2n. Such a homomorphism exists if *n* divides $2j + 1$.
- $|\phi_n(\pi_1(\mathcal{N}))|=2$, so $\mathcal N$ lifts to n totally geodesic surfaces in $\hat M_{j,n}$
- Any element α of order 2 in D_{2n} fixes exactly 1 surface in $\hat{M}_{j,n}$ and exchanges the rest pairwise.
- The cover $\hat{M}_{j,n}/\langle\alpha\rangle$ contains $(n+1)/2$ surfaces.
- \bullet We need to show that there are infinitely many prime *j* such that *n* divides $2j + 1$. We write $n = 2q + 1$ and consider the arithmetic progression ${q + nh}_{h=0}^{\infty}$. Dirichlet's theorem says that there are infinitely many primes in such an arithmetic progression.

K ロ ト K 個 ト K 差 ト K 差 ト ニ 差

Boundary Slope Restrictions

É

重

