Totally Geodesic Surfaces in Twist Knot Complements

Khanh Le Temple University

joint with Rebekah Palmer

Results

Theorem (L., Palmer)

There exists infinitely many non-commensurable hyperbolic 3-manifolds that contain exactly k totally geodesic surfaces for any positive integer k.

- we prove the theorem by finding infinitely many non-commensurable hyperbolic 3-manifolds each containing exactly 1 totally geodesic surface
- ...and by using covering tricks to produce examples for all k > 1.

(日)

Results

Theorem (L., Palmer)

For any odd prime *j*, the complement $M_j := S^3 \setminus K_j$ contains a unique totally geodesic surface.

Figure: The twist knot K_i with j half-twists

Figure: The 3-punctured sphere N in M_j

•
$$\Gamma_j := \pi_1(M_j) = \langle a, b | w_j a w_j^{-1} = b \rangle$$

2

Figure: The 3-punctured sphere N in M_j

- $\Gamma_j := \pi_1(M_j) = \langle a, b | w_j a w_j^{-1} = b \rangle$
- M_j admits a complete finite-volume hyperbolic metric for $j \ge 2$ given by $\rho: \Gamma_j \to SL_2(\mathbb{C})$:

$$a\mapsto egin{pmatrix} 1&1\0&1\end{pmatrix},\quad b\mapsto egin{pmatrix}1&0\z_j&1\end{pmatrix}$$

where z_i is an algebraic integer.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Figure: The 3-punctured sphere N in M_j

- $\Gamma_j := \pi_1(M_j) = \langle a, b | w_j a w_j^{-1} = b \rangle$
- M_j admits a complete finite-volume hyperbolic metric for $j \ge 2$ given by $\rho: \Gamma_j \to SL_2(\mathbb{C})$:

$$a\mapsto egin{pmatrix} 1&1\0&1\end{pmatrix},\quad b\mapsto egin{pmatrix}1&0\z_j&1\end{pmatrix}$$

where z_i is an algebraic integer.

• (Adams): N is a totally geodesic surface.

< ロ > < 同 > < 回 > < 回 >

Figure: The 3-punctured sphere N in M_j

- $\Gamma_j := \pi_1(M_j) = \langle a, b | w_j a w_j^{-1} = b \rangle$
- *M_j* admits a complete finite-volume hyperbolic metric for *j* ≥ 2 given by
 ρ : Γ_j → SL₂(ℂ):

$$a\mapsto egin{pmatrix} 1&1\0&1 \end{pmatrix},\quad b\mapsto egin{pmatrix} 1&0\z_j&1 \end{pmatrix}$$

where z_j is an algebraic integer.

- (Adams): N is a totally geodesic surface.
- (Hoste Shanahan): $[\mathbb{Q}(z_j) : \mathbb{Q}] = j$

< ロ > < 同 > < 回 > < 回 >

Proposition (Reid)

Let Γ be a non-cocompact Kleinian group of finite covolume that satisfies the following two conditions:

- $\mathbb{Q}(tr \Gamma)$ is of odd degree over \mathbb{Q} and contains no proper real subfield other than \mathbb{Q} .
- Γ has integral traces.

Then Γ contains no cocompact Fuchsian subgroups.

Corollary (Reid)

 M_j does not contain any closed totally geodesic surface for any odd prime j.

Remark

Proposition (Reid)

Let Γ be a non-cocompact Kleinian group of finite covolume that satisfies the following two conditions:

- $\mathbb{Q}(tr \Gamma)$ is of odd degree over \mathbb{Q} and contains no proper real subfield other than \mathbb{Q} .
- Γ has integral traces.

Then Γ contains no cocompact Fuchsian subgroups.

Corollary (Reid)

 M_j does not contain any closed totally geodesic surface for any odd prime j.

Remark

• In fact, we prove uniqueness of N in M_j under these two conditions.

Proposition (Reid)

Let Γ be a non-cocompact Kleinian group of finite covolume that satisfies the following two conditions:

- $\mathbb{Q}(tr \Gamma)$ is of odd degree over \mathbb{Q} and contains no proper real subfield other than \mathbb{Q} .
- Γ has integral traces.

Then Γ contains no cocompact Fuchsian subgroups.

Corollary (Reid)

 M_j does not contain any closed totally geodesic surface for any odd prime j.

Remark

- In fact, we prove uniqueness of N in M_j under these two conditions.
- Using Magma, we verify that the first condition holds for all $2 \le j \le 99$.

Proposition (Reid)

Let Γ be a non-cocompact Kleinian group of finite covolume that satisfies the following two conditions:

- $\mathbb{Q}(tr \Gamma)$ is of odd degree over \mathbb{Q} and contains no proper real subfield other than \mathbb{Q} .
- Γ has integral traces.

Then Γ contains no cocompact Fuchsian subgroups.

Corollary (Reid)

 M_j does not contain any closed totally geodesic surface for any odd prime j.

Remark

- In fact, we prove uniqueness of N in M_j under these two conditions.
- Using Magma, we verify that the first condition holds for all $2 \le j \le 99$.
- This proposition gives us a convenient way to rule out closed surfaces.

Assuming j is an odd prime and Σ is a totally geodesic surface in M_j :

• Σ must be a cusped surface.

э

Assuming j is an odd prime and Σ is a totally geodesic surface in M_j :

- Σ must be a cusped surface.
- $\operatorname{tr}(\pi_1(\Sigma)) \subset \mathbb{R} \cap \mathbb{Q}(z_j) = \mathbb{Q}$. Integral traces $\Rightarrow \operatorname{tr}(\pi_1(\Sigma)) \subset \mathbb{Z}$.

э

・ロト ・四ト ・ヨト ・ヨト 三日

・ロト ・四ト ・ヨト ・ヨト 三日

• There exists $\gamma \in \Gamma$ such that $\gamma(\infty) = \theta_{-}$

3

- There exists $\gamma \in \Gamma$ such that $\gamma(\infty) = heta_-$
- $\operatorname{tr}(\gamma a^m \ell^n \gamma^{-1} a^p \ell^q) \in \mathbb{Z}$

2

Assuming j is an odd prime and Σ is a totally geodesic surface in M_j :

- Σ must be a cusped surface.
- $tr(\pi_1(\Sigma)) \subset \mathbb{R} \cap \mathbb{Q}(z_j) = \mathbb{Q}$. Integral traces $\Rightarrow tr(\pi_1(\Sigma)) \subset \mathbb{Z}$.
- The trace condition holds:

$$\operatorname{tr}(\gamma a^{m}\ell^{n}\gamma^{-1}a^{p}\ell^{q}) = \delta^{2}(nq\tau^{2} + (mq + np)\tau + mp) \in \mathbb{Z}$$

where τ is the cusp shape and

$$\gamma = \begin{pmatrix} \alpha & \beta \\ \delta & \eta \end{pmatrix}$$

To execute this idea, we need...

- ...to find cusp-to-cusp geodesics θ .
- ...to find $\gamma \in \Gamma_j$ such that $\gamma(\infty) = \theta_-$.

イロト 不得 トイヨト イヨト

Geometric Observation

Lemma (Fisher, Lafont, Miller, Stover)

Let M be a complete finite-volume hyperbolic 3-manifold. Let Σ_1 , Σ_2 are two distinct properly immersed totally geodesic surfaces with non-empty intersection. Then each component of $\Sigma_1 \cap \Sigma_2$ is either a closed geodesic or a cusp-to-cusp geodesic.

The key is that:

• The intersections are all transverse.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Geometric Observation

Lemma (Fisher, Lafont, Miller, Stover)

Let M be a complete finite-volume hyperbolic 3-manifold. Let Σ_1 , Σ_2 are two distinct properly immersed totally geodesic surfaces with non-empty intersection. Then each component of $\Sigma_1 \cap \Sigma_2$ is either a closed geodesic or a cusp-to-cusp geodesic.

The key is that:

- The intersections are all transverse.
- All components in the intersection must be properly immersed, complete, 1 dimensional submanifolds.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Geometric Observation

Lemma (Fisher, Lafont, Miller, Stover)

Let M be a complete finite-volume hyperbolic 3-manifold. Let Σ_1 , Σ_2 are two distinct properly immersed totally geodesic surfaces with non-empty intersection. Then each component of $\Sigma_1 \cap \Sigma_2$ is either a closed geodesic or a cusp-to-cusp geodesic.

The key is that:

- The intersections are all transverse.
- All components in the intersection must be properly immersed, complete, 1 dimensional submanifolds.
- By looking at intersections of lifts of totally geodesic surfaces to \mathbb{H}^3 , we can find cusp-to-cusp geodesics.

(日)

Boundary Slope Restrictions

Lemma

Let j be an odd prime and Σ be any (cusped) totally geodesics surface in M_j . Then the complete set of boundary slopes of Σ is $\{1/0, -2\}$ (up to multiplicity).

• $\Sigma = N$: Knot diagrams $\Rightarrow
ho(\pi_1(N)) = \langle a, y
angle$ where

$$a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad y = \begin{pmatrix} -1 & 0 \\ -4 & -1 \end{pmatrix}.$$

- The boundary slopes restriction implies that any totally geodesic surface Σ has a lift $H_{s/t}$.
- In fact, the slope at s/t of $H_{s/t}$ is 1/0.
- Using $\pi_1(N)$, we can find $\zeta \in \Gamma_j$ mapping s/t to ∞ .

- Moving $H_{s/t}$ by $\zeta \in \Gamma_j$ mapping s/t to ∞ .
- We get a cusp-to-cusp geodesic $\theta = (\theta_-, \infty)$ where $\theta_- \in \mathbb{Q}(z_j)$.
- Therefore, there exists

$$\gamma = \begin{pmatrix} lpha & eta \\ \delta & \eta \end{pmatrix} \in \mathsf{\Gamma}_j \leq \mathsf{SL}_2(\mathbb{Z}[z_j])$$

イロト イヨト イヨト イヨト

that maps θ_- to ∞ .

Goal: Finding algebraic conditions on entries of γ and check det $(\gamma) = 1$.

• We have $\gamma(\theta_{-}) = \infty$. Therefore,

$$\delta\theta_- + \eta = 0$$

Goal: Finding algebraic conditions on entries of γ and check det $(\gamma) = 1$.

• We have $\gamma(\theta_{-}) = \infty$. Therefore,

 $\delta\theta_- + \eta = \mathbf{0}$

 The slope of H_{s/t} at θ₋ is either 1/0 or -2. Suppose that it is -2. Applying the trace condition to the cusp-to-cusp geodesic θ, we get:

 $\delta = \pm tz_j \in \mathbb{Z}[z_j]$

Goal: Finding algebraic conditions on entries of γ and check det $(\gamma) = 1$.

• We have $\gamma(\theta_{-}) = \infty$. Therefore,

 $\delta\theta_- + \eta = \mathbf{0}$

• The slope of $H_{s/t}$ at θ_{-} is either 1/0 or -2. Suppose that it is -2. Applying the trace condition to the cusp-to-cusp geodesic θ , we get:

 $\delta = \pm tz_j \in \mathbb{Z}[z_j]$

• Therefore, we also get:

 $\eta = \pm (sz_j + 4s' + 2t) \in \mathbb{Z}[z_j]$

 \bullet Move the ${\it H}_{{\it s}/t}$ by γ

- Move the $H_{s/t}$ by γ
- The point σ is a cusp point and a rational number. Therefore,

$$\frac{lpha}{\delta} + r(2- au) \in \mathbb{Q}$$

・ロト ・回 ト ・ヨト ・ヨト

for some $r \in \mathbb{R}$.

- Move the $H_{s/t}$ by γ
- The point σ is a cusp point and a rational number. Therefore,

$$rac{lpha}{\delta} + r(2- au) \in \mathbb{Q}$$

for some $r \in \mathbb{R}$.

 $\bullet\,$ Solving for α we get

 $\alpha = \alpha_1 z_j + \alpha_0$

・ロト ・回 ト ・ヨト ・ヨト

for $\alpha_i \in \mathbb{Z}$.

• $det(\gamma) = 1$ implies that:

$$(\alpha_1 z_j + \alpha_0)(sz_j + 4s' + 2t) - tz_j\beta = \pm 1$$

2

イロン イ団 とく ヨン イヨン

• $det(\gamma) = 1$ implies that:

$$(\alpha_1 z_j + \alpha_0)(sz_j + 4s' + 2t) - tz_j\beta = \pm 1$$

• Comparing the coefficients of z on both sides modulo t, we get

$$\alpha_1 s = 0 \mod t, \quad \alpha_0 s = 0 \mod t$$

Since gcd(s, t) = 1, $\alpha_i = 0 \mod t$. This contradicts the determinant equation.

• $det(\gamma) = 1$ implies that:

$$(\alpha_1 z_j + \alpha_0)(sz_j + 4s' + 2t) - tz_j\beta = \pm 1$$

• Comparing the coefficients of z on both sides modulo t, we get

 $\alpha_1 s = 0 \mod t, \quad \alpha_0 s = 0 \mod t$

Since gcd(s, t) = 1, $\alpha_i = 0 \mod t$. This contradicts the determinant equation.

• There is no such $\gamma \in \Gamma$, and so θ is not a cusp-to-cusp geodesic. This contradicts the geometric observation that totally geodesic surface intersects along cusp-to-cusp geodesics. Therefore, $H_{s/t}$ does not cover a totally geodesic surface in M_i .

イロン 不良 とくほう イロン・ロー

• $det(\gamma) = 1$ implies that:

$$(\alpha_1 z_j + \alpha_0)(sz_j + 4s' + 2t) - tz_j\beta = \pm 1$$

• Comparing the coefficients of z on both sides modulo t, we get

 $\alpha_1 s = 0 \mod t, \quad \alpha_0 s = 0 \mod t$

Since gcd(s, t) = 1, $\alpha_i = 0 \mod t$. This contradicts the determinant equation.

- There is no such $\gamma \in \Gamma$, and so θ is not a cusp-to-cusp geodesic. This contradicts the geometric observation that totally geodesic surface intersects along cusp-to-cusp geodesics. Therefore, $H_{s/t}$ does not cover a totally geodesic surface in M_i .
- The proof proceed similarly in the second case.

イロン 不良 とくほう イロン・ロー

Thank you!

2

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Lifting N

- Consider the cover M
 _{j,n} corresponding to the kernel of a surjective homomorphism φ_n: Γ_j → D_n to the dihedral group of order 2n. Such a homomorphism exists if n divides 2j + 1.
- $|\phi_n(\pi_1(N))| = 2$, so N lifts to n totally geodesic surfaces in $\hat{M}_{j,n}$
- Any element α of order 2 in D_{2n} fixes exactly 1 surface in $\hat{M}_{j,n}$ and exchanges the rest pairwise.
- The cover $\hat{M}_{j,n}/\langle lpha
 angle$ contains (n+1)/2 surfaces.
- We need to show that there are infinitely many prime j such that n divides 2j + 1. We write n = 2q + 1 and consider the arithmetic progression $\{q + nh\}_{h=0}^{\infty}$. Dirichlet's theorem says that there are infinitely many primes in such an arithmetic progression.

Boundary Slope Restrictions

