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Goal: Introduce a scheme theory for tropical geometry.
Commutative algebra of ideals in the semiring of tropical
polynomials.

Slogan: Tropical geometry is a combinatorial shadow of
algebraic geometry.



Distraction question

If I ⊆ S := K [x0, . . . , xn] is a homogeneous ideal of (projective)
dimension zero, then

deg(I) =
∑

p∈V (I)

multp(V (I))

where the multiplicity is the length of (S/I)P as an SP module,
where P is the ideal of the point p.
Question: What proofs do you know that do not involve
localization/primary decomposition?



The tropical semiring

R = (R ∪ {∞},⊕, ◦· ),

where ⊕= min and ◦· = +.

Examples: 5 ⊕ 8 = 5
3◦· 8 = 11
3◦· (5 ⊕ 8) = 8 = 3◦· 5 ⊕ 3◦· 8.
(6◦· 5) ⊕ 10 =?

This is commutative, associative,∞ is the additive identity, and
0 is the multiplicative identity.

Warning: No subtraction (so we have a semiring).



Semiring of tropical polynomials

The semiring of tropical polynomials is R[x1, . . . , xn].
3◦· x2

1 ⊕ 5◦· x1◦· x2 ⊕ 7 = min(2x1 + 3, x1 + x2 + 5,7).

Polynomials not functions! x2 ⊕ x ⊕ 0 6= x2 ⊕ 0.

An ideal I ⊆ R[x1, . . . , xn] is a set closed under addition, and
under (tropical) multiplication by elements of R[x1, . . . , xn].

Warning: Not always finitely generated!
Example: 〈x ⊕ y , x2 ⊕ y2, x3 ⊕ y3, . . . 〉.



The tropical hypersurface V (f ) of f ∈ R[x1, . . . , xn] is

{w ∈ Rn
: f (w) =∞ or the minimum in

f (w) is achieved at least twice}.

Example: f = x ⊕ y ⊕ 0 = min(x , y ,0)

0
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x

The variety of I is

V (I) =
⋂
f∈I

V (f ).



Back to your first algebra class . . .

When R is a semiring, the image of a semiring homomorphism
is the quotient by a congruence.
This is an equivalence relation on R compatible with addition
and multiplication: a ∼ b implies a ⊕ c ∼ b ⊕ c, and
a◦· c ∼ b◦· c.

Giansiracusa bend congruence: For
f =

⊕
cv◦· xv ∈ R[x1, . . . , xn], set fû =

⊕
v 6=u cv◦· xv. The bend

congruence is

B(I) = {f ∼ fû : f ∈ I,xu is a monomial occurring in f}.

Example: I = 〈x ⊕ y ⊕ 0〉. Then
B(I) = 〈x ⊕ y ⊕ 0 ∼ x ⊕ y ∼ x ⊕ 0 ∼ y ⊕ 0, . . . 〉.



Giansiracusa bend congruence: For
f =

⊕
cv◦· xv ∈ R[x1, . . . , xn], set fû =

⊕
v 6=u cv◦· xv. The bend

congruence is

B(I) = {f ∼ fû : f ∈ I,xu is a monomial occurring in f}.

Why this definition? For I ⊆ K [x1, . . . , xn], the “K -valued points”
of V (I) are Hom(K [x1, . . . , xn]/I,K ). When K = K this is in
bijection with the closed points of V (I): φ 7→ (φ(x1), . . . , φ(xn))

This bijection holds tropically:
Hom(R[x1, . . . , xn]/B(I),R)↔ V (I)
φ(xi) = wi is well-defined if and only if f (w) = g(w) for all
f ∼ g ∈ B(I), so if and only if f (w) = fû(w) for all f ∈ I,u.



Connection to usual algebraic geometry
Let K be a field with a valuation val : K → R = R ∪ {∞}
satisfying

1. val(ab) = val(a) + val(b) for all a,b ∈ K ,
2. val(a + b) ≥ min(val(a), val(b)) for all a,b ∈ K , and
3. val(a) =∞ if and only if a = 0.

Example: (trivial valuation) Any K , val(a) = 0 for all a 6= 0.
Given f ∈ K [x1, . . . , xn], f =

∑
cuxu,

trop(f ) =
⊕

val(cu)◦· xu = min(val(cu) + x · u).

Examples:
• f = x + y + 1 trop(f ) = x ⊕ y ⊕ 0
• (Q, val2). f = 2x2 + 3xy + 4y2 + 5x + 7y + 8

trop(f ) = 1◦· x2 ⊕ xy ⊕ 2◦· y2 ⊕ x ⊕ y ⊕ 3.



Tropicalization

Given f ∈ K [x1, . . . , xn], f =
∑

cuxu,

trop(f ) =
⊕

val(cu)◦· xu = min(val(cu) + x · u).

The tropicalization of I ⊆ K [x1, . . . , xn] is

trop(I) = 〈trop(f ) : f ∈ I〉 ⊆ R[x1, . . . , xn].

The tropicalization of X = V (I) is

trop(X ) = V (trop(I)) =
⋂

g∈trop(I)

V (g) ⊆ Rn
,



The fundamental and structure theorems of tropical
algebraic geometry

Theorem Let X = V (I) ⊆ An
K . The tropicalization trop(X ) of X

equals*

cl(val(X )) = cl((val(x1), . . . , val(xn)) : x = (x1, . . . , xn) ∈ X )

When X is irreducible, trop(X ) is the support of a pure
R-rational balanced polyhedral complex of dimension dim(X )
that is dim(X )-connected through codimension one.



The fundamental and structure theorems of tropical
algebraic geometry

Theorem Let X = V (I) ⊆ An
K . The tropicalization trop(X ) of X

equals
cl(val(X (L)))

for any algebraically closed nontrivially valued field extension
L/K .
When X is irreducible, trop(X ) is the support of a pure
R-rational balanced polyhedral complex of dimension dim(X )
that is dim(X )-connected through codimension one.



The fundamental theorem

Example X = V (x + y − 1) ⊆ A2
C, where C has the trivial

valuation.

X = {(a,1− a) : a ∈ C}

trop(X ) = cl((val(a), val(1− a)) : a ∈ C{{t}})

val(a) > 0



The fundamental theorem

Example X = V (x + y − 1) ⊆ A2
C, where C has the trivial

valuation.

X = {(a,1− a) : a ∈ C}

trop(X ) = cl((val(a), val(1− a)) : a ∈ C{{t}})

val(a) < 0



The fundamental theorem

Example X = V (x + y − 1) ⊆ A2
C, where C has the trivial

valuation.

X = {(a,1− a) : a ∈ C}

trop(X ) = cl((val(a), val(1− a)) : a ∈ C{{t}})

a = 1− b, val(b) > 0



The balancing condition
A weighted one-dimensional rational polyhedral fan Σ, with s
rays R≥0ui weighted by mi , is balanced if

s∑
i=1

miui = 0.

Here ui ∈ Zn with gcd((ui)j) = 1.
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The balancing condition
A weighted one-dimensional rational polyhedral fan Σ, with s
rays R≥0ui weighted by mi , is balanced if

s∑
i=1

miui = 0.

Reality check: What value of a makes this fan balanced?
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Break!



Towards tropical schemes

A subscheme of An is defined by an ideal I ⊆ K [x1, . . . , xn]:

X = Spec(K [x1, . . . , xn]/I).

Naive definition: A subscheme of trop(An) = Rn should
correspond to an ideal I ⊆ R[x1, . . . , xn].
Problems:

1. R[x1, . . . , xn] is not Noetherian
2. R[x1, . . . , xn] is not cancellative:

(x ⊕ 0)3 = (x2 ⊕ 0)◦· (x ⊕ 0) = x3 ⊕ x2 ⊕ x ⊕ 0.
3. For I ⊆ R[x1, . . . , xn], V (I) can be fairly arbitrary.



Solution: Restrict the class of ideals allowed.

Notation: [f ]xu is the coefficient of xu in f .

Definition A tropical ideal is an ideal I ⊆ R[x1, . . . , xn] satisfying
the monomial elimination axiom:

for all f ,g ∈ I with [f ]xu = [g]xu there exists h ∈ I with
[h]xu = ∞, and [h]xv ≥ min([f ]xv , [g]xv) (with equality if
different).

Example: If x ⊕ y , x ⊕ z ∈ I then y ⊕ z ∈ I.

Example: I = trop(J) for J ⊆ K [x1, . . . , xn]. f = trop(F ),
g = trop(G), [F ]xu = [G]xu . Then h = trop(F −G).



Definition A tropical ideal is an ideal I ⊆ R[x1, . . . , xn] such that
for all f ,g ∈ I with [f ]xu = [g]xu there exists h ∈ I with [h]xu =∞,
and [h]xv ≥ min([f ]xv , [g]xv).

Definition A subscheme of trop(An) is defined by a tropical ideal
in R[x1, . . . , xn].

X = Spec(R[x1, . . . , xn]/B(I))



Definition A tropical ideal is an ideal I ⊆ R[x1, . . . , xn] such that
for all f ,g ∈ I with [f ]xu = [g]xu there exists h ∈ I with [h]xu =∞,
and [h]xv ≥ min([f ]xv , [g]xv).

Definition A subscheme of trop(An) is defined by a tropical ideal
in R[x1, . . . , xn].

X = Spec(R[x1, . . . , xn]/B(I))



Theorem [M-Rincón]
1. Homogeneous tropical ideals have Hilbert polynomials.

This leads to a definition of dimension and degree.
2. There are tropical ideals that are not trop(J) for any

J ⊆ K [x1, . . . , xn].
3. If I is a tropical ideal, then V (I) is the support of a finite

R-rational polyhedral complex of maximum dimension
dim(I). The top-dimensional part is balanced.



Theorem (continued)

4. Tropical ideals obey the ascending chain condition: there is
no

I1 ( I2 ( I3 ( . . .

with all Ij tropical ideals.
5. Tropical ideals obey the weak Nullstellensatz:

V (I) = ∅ if and only if I = 〈0〉.

(Not true for arbitrary ideals: V (〈x ⊕ 0, x ⊕ 1〉) = ∅.
6. Elimination theory works for tropical ideals:

V (I ∩ R[x1, . . . , xn−1]) = πn−1(V (I)).



Theorem (Draisma, Rincón) There are balanced R-rational
polyhedral complexes not of the form V (I) for I a tropical ideal.

Warning: Many basic algebraic operations do not preserve the
tropical ideal property.

1. If I, J are tropical ideals, then I + J and I ∩ J might not be.
2. (I : J) and (I : J∞) might not be (problem with localization!)

Example: I = trop(〈x − y〉), J = trop(〈x − z〉).
x ⊕ y , x ⊕ z ∈ I + J, but y ⊕ z is not.



Balancing

A curve is balanced if
∑

miui = 0. Suffices to show
(
∑

miui) · v = 0 for all v ∈ Rn. Equivalently:∑
i:ui ·v>0 mi(ui · v) =

∑
i:ui ·v<0 mi |ui · v|.
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These sums are the sums of the multiplicities of the points on
the right and on the left. To show equality, it suffices to show

that both sums equal the degree.



Back to the distraction . . .

I zero-dimensional:

deg(I) =
∑

p∈V (I)

multp(V (I))

Tropically, multw(V (I)) = deg(inw(I)). When I = trop(J),
multw(V (I)) =

∑
p:val(p)=w multp(V (J)).

Weird fact: For homogeneous J ⊆ K [x0, . . . , xn],
deg((inw(J) : x∞0 )) =

∑
p:val(p)∈w+pos(ei :i>0) multp(V (J)).



Help!

Question: What is the right notion of prime, or equivalently of
irreducibility?
Jóo-Mincheva define a prime congruence, and show that
R[x1, . . . , xn] has Krull dimension n∗. However they also show
that the varieties of primes are limited. More seriously, in
forthcoming work they show that the only prime tropical ideal is
the ideal of a point.
Want a definition that plays well with geometry.

Question: What about primary decomposition?

= U U U=


