Grothendieck's localization problem Takumi Murayama (Princeton University) Takeaways ^① I open problems in CA in EGA ! ^② Techniques from birational geometry have applications to CA ! ^③ I many open problems related to this talk ! -

$$
\frac{\text{C}_{\text{r}}\text{centions}}{\text{A}_{\text{r}}}
$$

All rings will be comin . , noetherian, w/ identity (Am, k) ↳ residue fell Alm (unique maximal ideal ↳ local ring

2 Au the generic fibers also smooth?

Algebraic Given a flat local map
\n(A,m,k)
$$
\rightarrow
$$
 (B,n,8)
\nof local rings. If
\n $\beta \underset{A}{\oplus} k$ is regular
\nthen is $\beta \underset{A}{\oplus} \underset{m}{\upharpoonright} (A|p)$ regular $\forall p \leq A$
\n γ
\n $Ap|p \cdot Ap = \text{Frec}(A|p)$
\nIn other words, for the property of
\nhaving regular fiber localize?
\nTwo cancats
\n \overline{D} is equalor " is for weak]
\ngence Here could be singular

El (A,m, R) = local domain of d:m! and chan. p70 w/aEA .f. · a her no p^{ot} voot in A/m=f, but . a has a g^{ot} root in Frac(A) Then, $A \longrightarrow \left(\frac{A[x]}{x^{p}-a}\right)_{\leq n}$ $=$ \mathcal{B} har regular closed fiber $B\otimes k \simeq \left(\begin{array}{c} k[x] \\ x^p-a \end{array}\right)$ but non-reduced generic fike $\begin{array}{ccc} \beta & \beta & \text{frac}(A) \approx & \left(\frac{\text{frac}(A) [x]}{x^{\beta-a}} \right) \\ \end{array}$

First Recall B f.t.
$$
l^2k = \text{field}
$$

\nR is smooth over k

\n $\Leftrightarrow R \oplus R'$ regular t^2 finite field

\n $\Leftrightarrow R \oplus R'$ regular l^2 finite field

\n $\Leftrightarrow \text{geometrically regular}$

\nThen for our function $h \rightarrow \tilde{h}$

\nEquation 18: $\text{field of char } p > 0$

\n $\lceil k : Rf \rceil = \infty$

\n $A = \int_{r=0}^{\infty} \sum_{r=0}^{\infty} a_r \div e \times [k] \times J$

\n[$\lceil k! [a_1, \ldots] : Rf \rceil \le \infty$

\nThe gunit k is

\n $\widehat{A} \oplus$ Frach?

For
$$
(A)
$$
 9. For (A) 1. For (A) 2. For (A) 3. For (A) 3. For (A) 4. For (A) 4. For (A) 5. For (A) 6. For (A) 7. For (A) 7. For (A) 8. For (A) 9. For (A) 1. For $($

 \overline{a}

Grothendieck's localization problem Gabs] $\overline{\varphi: (a, n, k) \rightarrow (B, n, k)}$ flat local $Q A \rightarrow \hat{A}$ geom. P k → BIG k geom . $\begin{matrix} 2 \\ 1 \end{matrix}$ ⇒ ⁴ geom. $\mathbb F$! In other words, does the property of having geon - IP fibers localize? Rem Name From Avramov & Foxby [1994] P = regular, normal, reducci complete intersection, Gorenstem , Cohenriacaning

Macaulay fictions of Eatings & Kawasaki . . ^A &F : fate flat dim cid land ^Q ^① what about other IP? ^② I uniform proof for all IP above? A- YES! For well-behaved IP • [l: k) ^L ^A } [Grothendieck & Dieudonne. I 965] • A Z ④ of [µwoe 1984) . Geometric version : ⁴ f. t. , AB excellent [Shimamoto 2017] • In general [MT

Next 82 what properties IP? ^G ³ Techniques fun birational geometry Some proofs . § ² what properties IP? All properties IP above behave well under : • flat maps • deformations r localisation Permanence conditions [GBD 1965] 4 :(A.m, $k)$ \rightarrow $(8,$ u , l) local flat \bigoplus_{φ} (Arcent) A is P
 φ is geon. P s \Rightarrow B is P ⑤ (Descent) ^B is IP ⇒ A- is IP

CI (Deformation) A/E: iP I t nzd is un $\Rightarrow A$ is $\mathbb P$ ED (Localization) A is $P \Rightarrow A_{\Psi}$ is P Hp=A prime Handout: Known cesults fer Mabore . (II) for weak normality: excellent A [Bingener & Flenner 1993] In general [M] . F-njective (B) = (W) [Datte 8 M] [Heshnoto 2010] [schwede 2009] $F-f_{2n}$ the c_M D : [Aberbrich & Enescu 2009] Both A+4 are CM [Datta & M] Only 4 ir CM

Conj [Fedder ¹⁹⁸³³ ⑤ is usually hardest : not satisfied • F-pure (Fedder 1985] . K-pure Lred
. F-regular [Singh 1999 J F-regular Longweiser
- F-nilpotent [Sinivas & Takagi 2017] Lots of open greatins. Main Him[M] IP- - property of local mugs Assume . regular => PP \cdot \circled{D} \sim \circled{w} hold for \circled{r} $\varphi: (A, m, k) \longrightarrow (B, n, l)$ $A \rightarrow \hat{A}$ geom. P k [→] ^B k geom p $\frac{1}{3}$ = 4 geom. PP

New - weakly normal rational sing's (ef. t. Il of char. 0) C. seminoval). F-rational (excellent)
(). Cshen-Macaulay + F-rijective s Ruown persourly under some

Fig 3. Technigue from formational geometry
\nMain strategy, Redue to A=regular.
\nProof(A, B) 1965]
\n
$$
\varphi: (A,m,k) \rightarrow (B,m,k)
$$
 local flat
\n $\varphi: (A,m,k) \rightarrow (B,m,k)$ local flat
\n $\varphi: \varphi$ and φ is the final ring of
\n A is regular $\frac{1}{2}$ is a general point of
\n φ is the final ring of
\n φ is the

How to reduce to this case?
\nSecial case A = 0
\nGLP is one of the first application of
\nThm (Resolution of singular
\n[Hornaka 1964])
\n(A,m) local domain
\n01
\n02, A \rightarrow A general, regular
\n
$$
\Rightarrow
$$
 [1 proper birational morphism
\n \Rightarrow [1] proper birational morphism
\n \Rightarrow [2] A \rightarrow C:3; -1 finite type s.6.
\n0 C: regular 4 integral
\nFrac(G) \forall is
\n \Rightarrow C:3; -1 finite type s.6.

② Every pair of primes

\n
$$
\begin{array}{rcl}\n\downarrow & \downarrow & \
$$

Consider $\sigma_{\!\!\mathbf{k}}$ \int $\left(4\right)$ Los SA \longrightarrow B O c_i R 1 4 L also has geon. Pf.bes $\overline{\mathsf{P}}$ away from gen. pt. $\mathcal{L}_{\bm{\dot{\nu}}})$ regular $Fnc(A) = Frac(Ci)$ Note and 10 $\left(\mathcal{B}_{q_{j}}=1\right)$ SSB_{α}^{c} $Z_{stG,i}$ (β) $|\boldsymbol{0}|$

Consider $\psi: (C_i)_{\varphi} \longrightarrow (B \otimes C_i)_{\varphi}$ Pregular docal ring
Quon. Il fibre away from generic point $(c_i)_{\phi}$ 2 $(x_1,...,x_d)$ mac'l: deal

Assumption + Lemmon \Rightarrow $C_{\beta}\otimes C_{i}$) of $(c_{x_{1},...,x_{d}})$ is P $\begin{array}{c}\n\textcircled{if }r\textup{d}\\ \n\implies (\beta \otimes C_{c})_{\widetilde{\sigma}^{\prime}_{\mathbf{L}}}\qquad \text{if }\mathbb{P}\n\end{array}$ $\sum_{k=0}^{\infty}$ (BOC) of is P 0

Next case A=eft / field or certain DVR's Fhm (alterations [de Jong 19963) (A, m) domain eld or certain DUR's
e Jong 1996])
en al Hispaka's In algebraic version of Hironaka's thin above, while we don't know whether $\{A \rightarrow C_i\}$ exists s.E. Frac(A) = Erac(Ci), raction - meter 、
, c:3 s.t. $Fnc(R) \subseteq Frac(C_i)$ au finite est^lus. $B_{\sigma L} \longrightarrow (B_{\sigma R} C_{\delta})$ of flat \mathcal{L} $8₃$ STS is IP.

Rein . Previously used by Gabber to show Seine's non negativity conj . [Berthelot ¹⁹⁹⁹ ; Robert, ¹⁹⁹⁸ ; Hochster 1997] • Used for F-rationality in special cases [Hashimoto ²⁰⁰⁷ General case The (weak local uniformitalion; Crabber [IHuie , lastlo , Or go go to 2014J) weak analogue of de Jong's thin in geometric setting . BUT algebraic version we stated still holds as long as A → ^A geom . regular !

Rem Previously used to show: Previously area to sub R I-adrally complete) ⇒ R guasi-
R/I guasi-excellent J excellent excellent 7 (Gabber [Kuran.& shrouded) (R - -semi - local [Rothaus 1979T Cravoie -
(Rzeeni-local [Rotthous 1979]
(Rzee [Nishimura & Nishimura 1988]) **:** Guthendieck's Lifting Problem" Open Q Versions of J for other properties IP.

Def: Non-local ring R has genm. IP from
$$
\frac{1}{2}
$$
 from $\frac{1}{2}$ the $\frac{1}{2}$ is $\frac{1}{2}$ when $\frac{1}{2}$ is \frac

Known R- -semi local IP [⇒] reduced (Bethmann - Ionescu lao - P- regular [Grabber) IP -_ normal (Brezuleauuolthothaus ¹⁹⁸² ; Chiriacescu 1982] + [Nishimura & Noshimara 1988] A-uduad FALSE [Nishimura 1981)