Left orderable lattices in semisimple Lie groups

Sebastian Hurtado Salazar

University of Chicago

September 21, 2020

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Joint work with

Bertrand Deroin

CNRS – IMPA – AGM

KOX KOX KEX KEX E 1990

A group Γ is left-orderable if it admits a total order which is invariant by left multiplications.

 $\forall f, g, h \in \Gamma$: If $f < g$ then $hf < hg$

A folklore result

A countable group Γ is left-orderable iff it acts faithfully on the real line by orientation preserving homeomorphisms.

 $\Gamma \hookrightarrow$ Homeo⁺(ℝ)

If $p \in \mathbb{R}$ is a free orbit (i.e. $\forall g \in \Gamma$, $g(p) \neq p$), then we can define:

$$
h <_{\rho} g \quad \text{if} \quad h(p) < g(p).
$$

KORK ERKER ADE YOUR

Left-orderable groups:

- 1. \mathbb{Z}^n , \mathbb{F}_n .
- 2. Braid groups. Some MCG's of surfaces. RAAG's.
- 3. Thompson's group F (consist of piecewise homeomorphisms of an interval)

KORKA SERKER ORA

4. Many more...

Non left-orderable groups:

1. Groups with torsion.

2.
$$
\Gamma = \langle a, b | ab^7ab^{13}ab = e, ab^{-3}a^{-3}b = e, a^{-7}ba^{-2}b^3 = e, a^{-5}b^{-7}a^{-3}b^{-4} = e \rangle.
$$

- 3. Random groups. (Orlef, 2014) (Unknown for actions in the circle)
- 4. $SL_n(\mathbb{Z})$, when $n \geq 3$. (Witte-Morris, 1994)
- 5. It is unknown whether there exists an orderable group with property T.

KORK ERKER ADE YOUR

Orders in \mathbb{Z}^2 :

Orders in \mathbb{F}_2 : There are many more orders (Super-exponentially many when looking at balls in the Cayley graph).

KORK STRAIN A BAR SHOP

I will discuss the left-orderability of irreducible lattices in semi-simple Lie groups.

Notation: G is a Lie group, $G = Isom(X)$, where X is the associated symmetric space. Γ is a lattice if vol(G/Γ) < ∞ .

Rank: The real rank of G is the largest n such that euclidean \mathbb{R}^n embeds in X. Higher ranks means Rank(G) \geq 2. For $G = SL_n(\mathbb{R})$, $Rank(G) = n-1$.

Hyperbolic spaces, $G = SO(n, 1)$:

Fundamental groups of hyperbolic surfaces are left-orderable.

A conjecture of Boyer-Gordon-Watson, relates left-orderability of fundamental groups of 3-manifolds with taut foliations and Floer homology. See a lecture of Nathan Dunfield on his webpage.

The fundamental group of a hyperbolic 3-manifold is virtually left orderable.

Other rank one symmetric spaces:

An example of a RFRS lattice in complex hyperbolic plane by Agol-Stover is left-orderable. No examples in quaternionic hyperbolic, or Cayley plane are known to be left-orderable.

KID KA KERKER KID KO

Higher rank symmetric spaces

Zimmer program: Every smooth action on a manifold of an irreducible lattice in higher rank comes from a nice algebraic construction.

Example: $SL_n(\mathbb{Z})$ acts in \mathbb{R}^n linearly and projectively in \mathbb{P}^{n-1} . Zimmer program says $\Phi: \mathop{SL}\nolimits_n({\Bbb Z}) \to \mathop{\rm Diff}\nolimits(M^{n-1}),$ then $M = {\Bbb P}^{n-1}$ and action is standard.

For Homeo(M) very few things are known, Homeomorphisms are dynamically difficult.

Our main result concerns irreducible lattices in higher rank:

An irreducible lattice Γ in a connected semi-simple Lie group G of rank at least two is left-orderable iff Γ is torsion free and there exists a surjective morphism $G \rightarrow PSL(2, \mathbb{R})$.

▶ Dave Witte Morris and Witte Morris-Lifschitz proved this theorem for most (if not all) non-uniform lattices.

KORK ERKER ADE YOUR

Example 1: $SL_3(\mathbb{Z})$ is not left-orderable.

Example 2: $SL(2,\mathbb{Z}(\sqrt{2}))$ embeds as a lattice in $SL_2(\mathbb{R})\times SL_2(\mathbb{R})$ via

 $A \rightarrow (A, \sigma(A)),$

where $\sigma(a + b$ √ $(2) = a - b$ $\sqrt{2}$. Therefore $SL(2, \mathbb{Z}(\sqrt{2}))$ 2)) is not left-orderable.

Example 3: Passing to the universal covering in example 2 one gets a left-orderable lattice of higher rank.

Remark: Margulis showed all lattices in higher rank are arithmetic. So our theorem is mainly about groups similar to example 2.

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

A theorem of Ghys (1999):

If Γ is a lattice in a connected semi-simple Lie group G of rank at least two and $\mathsf{\Gamma} \to \mathsf{Homeo}^+(\mathbb{S}^1)$ is an action, then:

1. Either Γ has a finite orbit on \mathbb{S}^1 .

2. Or there exists a surjective morphism $G \rightarrow PSL(2, \mathbb{R})$.

 \triangleright This result was also proven by Burger-Monod around the same time for many lattices. Navas and Rezhnikov proved that any group with property T do not act smoothly in \mathbb{S}^1 . Ghys Theorem was generalized by Bader-Furman for some non-linear groups.

Strategy of proof: Assume G simple. Argue by contradiction. Assume Γ acts in $\mathbb R$ minimally.

Goal: Show Γ preserves a measure on R. This implies Γ is conjugated to an action by translations. $\Gamma \rightarrow \mathbb{Z}$, contradiction.

Suspension space (As in Nick Miller's talk):

$$
Y := (G \times \mathbb{R}) / \Gamma \quad \text{ with } \quad (g,t) \sim (g\gamma^{-1},\gamma(t)), \ \gamma \in \Gamma
$$

 \triangleright Y is an R-bundle over G/Γ . G acts on Y.

 \triangleright Γ preserves a measure in $\mathbb R$ iff G preserves a measure on Y.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Stiffness 1: Construct a G-stationary measure on Y and show is G-invariant.

Stiffness 2: Construct a P-invariant measure on Y and show is G-invariant.

Both properties are equivalent by Furstenberg correspondence. We take[∗] P-invariant measure on Y and show is G-invariant.

KORKA SERKER ORA

Philosophy: Higher rank abelian (hyperbolic) actions have rigidity. Understand dynamics of A-action in Y and show G-invariance.

Remark 1: This strategy was used in work of Brown,Rodriguez-Hertz,Wang (2014) about stiffness of actions of lattices. This was later applied by Brown, Fisher, Hurtado in the solution of Zimmer's conjecture (2016).

Remark 2: Our method follows same philosophy but avoids use of entropy and Ledrappier-Young formula.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Big problems: $\mathbb R$ is not compact. Action is not smooth.

Theorem (Deroin's space of almost-periodic actions (2011))

For a left orderable group Γ, there exists a compact space D with a one dimensional lamination such that:

- 1. Γ acts on D and preserve each leaf.
- 2. The action is Lipschitz in each one dimensional leaf.
- 3. Any action^{*} of Γ without a discrete orbit in $\mathbb R$ is conjugate to the action of Γ in a leaf of D.

Warning: D is in general infinite dimensional and its size is related to the possible left-orders of Γ.

Remark: D is related to space of orders constructed* by Ghys.

Remark 1: For Γ lift of action by homeomorphisms of \mathbb{S}^1 , D contains a copy of \mathbb{S}^1 .

 $\mathbf{x}(\mathbf{x}) = \mathbf{x}$ $Q(x)$

Example 1: For $\Gamma = \{a, b | aba^{-1} = b^2\}.$

Example 2: For $\Gamma = \mathbb{Z}^2$, D consist of actions by translations. D can be taken topologically to be $\mathbb{S}^1\times \mathbb{S}^1.$

Some other applications of D:

- 1. A left orderable, amenable group has surjection to \mathbb{Z} . (Witte-Morris).
- 2. Understanding of Hyde-Lodha 's example of f.g. simple left orderable group. (Triestino-Matte Bon)
- 3. Rigidity of actions of Thompson's groups and other related work. (Rivas, Matte Bon, Lodha, Triestino).

KORK ERKER ADE YOUR

Random walks by homeomorphisms of \mathbb{R} :

Suppose μ is a finitely supported, symmetric measure on Γ . Assume Γ fixed point free. Fix $p \in \mathbb{R}$. Consider the random walk:

$$
X_n(p)=g(X_{n-1}(p))
$$

KORK ERKER ADE YOUR

g is chosen as determined by μ .

What happen as $n \to \infty$?

Theorem (Deroin-Kleptsyn-Navas-Parwani (2012))

- 1. For all $p \in \mathbb{R}$, lim sup $X_n(p) = \infty$ and lim inf $X_n(p) = -\infty$ almost surely.
- 2. There exists a stationary Radon measure in \mathbb{R} . (unique* for minimal action).

KORKAR KERKER EL VOLO

3. Under necessary assumptions**: For all $p, q \in \mathbb{R}$ $\lim X_n(p) - X_n(q) = 0.$

DNKP Theorem implies that up to conjugation, Lebesgue is stationary: For all $x, y \in \mathbb{R}$, $x - y = \sum \mu(\gamma)(\gamma(x) - \gamma(y))$, moreover:

- 1. Lipschitz: $|\gamma(x)-\gamma(y)|\leq \frac{1}{\mu(\gamma)}|x-y|$,
- 2. Bounded displacement and non-triviality:

$$
\forall \mathsf{x}, \ \ \frac{1}{\mathsf{C}_\mu} \leq \sum \mu(\gamma) |\gamma(\mathsf{x}) - \mathsf{x}| \leq \mathsf{C}_\mu
$$

3. Harmonicity: $\forall x, x = \sum \mu(\gamma)\gamma(x)$.

 $D := \{(\Phi, p) | p \in \mathbb{R}, \Phi : \Gamma \to \text{Homeo}^+(\mathbb{R}) \text{ satisfying } 1, 2\}$ and $3\}/\sim$

KORKAR KERKER EL VOLO

The equivalence relation \sim is defined by translations: $(\Phi, p) \sim (T^t \Phi T^{-t}, p + t).$ There is an R-flow in D sending (Φ, p) to $(\Phi, p + t)$.

Thank you and have a nice week.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Ideas of proof of main theorem Let $X = (G \times D)/\Gamma$ be the suspension space for the Γ action on D. X is a G-space. Fix a maximal compact subgroup $K \subset G$, and let m_G be a probability measure on G which is

- \blacktriangleright absolutely continuous wrt Haar.
- invariant by left and right multiplications by K , and
- \blacktriangleright symmetric.

A general machinery shows that there exists on X a measure m_X which is m_G -stationary, namely which satisfies the convolution equation

$$
m_G \star m_X = \int g_* m_X m_G(dg) = m_X.
$$

Our goal is to establish that m_x is indeed G-invariant; we construct D, X and m_X are constructed in such a way that m_X is ergodic and conditionals measures along leafs of D are abs. continuous with respect to Lebesgue. For constructing D, we choose μ in Γ a dicretization probability measure for the Brownian motion in the symmetric space $K\backslash G$. $(G/P$ is the poisson [bo](#page-22-0)[u](#page-24-0)[n](#page-22-0)[da](#page-23-0)[ry](#page-24-0) [o](#page-0-0)f (Γ, μ) (Γ, μ) (Γ, μ) (Γ, μ) [\).](#page-0-0) **Weyl chambers** Consider the case $G = SL(3, \mathbb{R})$. We set $K = SO(3, \mathbb{R})$, and let $A \subset G = SL(3, \mathbb{R})$ be the subgroup of diagonal matrices with positive coefficients. Each $a \in \mathsf{lie}(A) \simeq \mathbb{R}^2$ determines a solvable subgroup $P^{\mathsf{a}} = A N^{\mathsf{a}}$, where N^{a} is the strong unstable foliation of a:

$$
N^a:=\{b\in G\mid e^{ta}be^{-ta}\rightarrow_{t\rightarrow-\infty}e_G\}.
$$

For generic a's, there are only six possibilities for the N^a 's, which defines a decomposition of A into six Weyl chambers:

イロン イ部ン イ君ン イ君ンシ

 2990

P^{W} -invariant measures

For each Weyl chamber W , we have the Iwasawa decomposition $G = KP^{\mathcal{W}}$. Applying Furstenberg's Poisson formula to the function $g \mapsto g_*m_X$, which is harmonic and bounded (since m_X is stationary), one proves that:

There exists a unique probability measure $m_X^{\mathcal{W}}$ on X which satisfies

- \blacktriangleright $m_X^{\mathcal{W}}$ is $P^{\mathcal{W}}$ -invariant and $P^{\mathcal{W}}$ -ergodic,
- \blacktriangleright the K-average of m $^{\mathcal{W}}_X$ wrt the normalized Haar measure on K equals m_x .

Global contraction property

The lamination defined by the flow T on the quasi-periodic space Z produces a one dimensional oriented lamination $\mathcal L$ on the suspension space X , which is invariant by the G -action.

We say that an element $a \in \text{lie}(A)$ has the global contraction property wrt some probability measure m on X if for m-a.e. $x \in X$, the flow associated to a contracts globally the leaf $\mathcal{L}(x)$ in the sense that

$$
d(e^{ta}(y), e^{ta}(z)) \rightarrow_{t \rightarrow +\infty} 0
$$
 for every $y, z \in \mathcal{L}(x)$.

Lyapunov exponents

For each Weyl chamber W , there exists an open half-space in lie(A) consisting of elements whose exponential have the global contraction property wrt to $m_X^{\cal W}$. Moreover, this half-space intersects the interior of W.

This half-space is determined by a Lyapunov exponent functional being negative. The Lyapunov exponent is the exponential rate of the derivative in the direction of $\mathcal L$ of an element of A. It is linear functional in lie(A) and is denoted by $\chi^{\mathcal{W}}$: lie(A) $\rightarrow \mathbb{R}$.

Propagating invariance

Assume that \mathcal{W},\mathcal{W}' are two adjacent Weyl chambers, and denote by a ${}^{\mathcal{W}, \mathcal{W}'}$ a non zero element in $\mathcal{W} \cap \mathcal{W}'$. Assume that the flow a has the global contraction property wrt m $^{\mathcal{W}}_X$. Then m $^{\mathcal{W}}_X = m_X^{\mathcal{W}'}$.

- ← ロン → 何 ン → ヨ ン → ヨ ン ニヨ

 2990

Idea of the proof main Lemma: Let a be an element of $\mathcal{W}\cap\mathcal{W}'$. Asume $m_{X}^{\mathcal{W}}$, $m_{X}^{\mathcal{W}'}$ ergodic. We show there are two Birkhoff generic points x_1, x_2 for $m_X^{\mathcal{W}}$ and $m_X^{\mathcal{W}'}$ with almost the same ergodic averages.

There is a nice relation between $m_X^{\cal W}$ and $m_X^{\cal W'}$, they are related via: $k^*m_X^{\mathcal{W}}$ and $m_X^{\mathcal{W}'}$ for $k \in \mathcal{K}$. $(k$ is an element of the Weyl group). This allow us to find x_1, x_2 generic in the same $(G \times \mathbb{R})/\Gamma$ leaf of X. As both measures are N_a -invariant, one can change the a-future of $\pi_{G/\Gamma}(x_1)$ to almost coincide with the future of $\pi_{G/\Gamma}(x_2)$. More formally, there exists $n_1, n_2 \in N_a$ such that:

$$
\lim_{t\to\infty} d_{G/\Gamma}(e^{ta}n_1\pi_{G/\Gamma}(x_1),e^{ta}n_2\pi_{G/\Gamma}(x_2)) < \epsilon
$$

Using the global contraction property we have $\lim d_X(e^{ta}n_1x_1,e^{ta}n_2x_2)<\epsilon$ and we are done because n_1x_1 and n_2x_2 can be chosen Birkhoff generic.

Thank you!

K □ ▶ K @ ▶ K 할 K X 할 K : 할 \ 10 Q Q Q