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A group Γ is left-orderable if it admits a total order which is
invariant by left multiplications.

∀f , g , h ∈ Γ : If f < g then hf < hg



A folklore result

A countable group Γ is left-orderable iff it acts faithfully on the
real line by orientation preserving homeomorphisms.

Γ ↪→ Homeo+(R)

If p ∈ R is a free orbit (i.e. ∀g ∈ Γ, g(p) 6= p), then we can
define:

h <p g if h(p) < g(p).



Left-orderable groups:

1. Zn, Fn.

2. Braid groups. Some MCG’s of surfaces. RAAG’s.

3. Thompson’s group F (consist of piecewise homeomorphisms
of an interval)

4. Many more...



Non left-orderable groups:

1. Groups with torsion.

2. Γ = 〈a, b| ab7ab13ab = e, ab−3a−3b = e, a−7ba−2b3 =
e, a−5b−7a−3b−4 = e〉.

3. Random groups. (Orlef, 2014) (Unknown for actions in the
circle)

4. SLn(Z), when n ≥ 3. (Witte-Morris, 1994)

5. It is unknown whether there exists an orderable group with
property T.



Orders in Z2:

Orders in F2: There are many more orders (Super-exponentially
many when looking at balls in the Cayley graph).



I will discuss the left-orderability of irreducible lattices in
semi-simple Lie groups.

Notation: G is a Lie group, G = Isom(X ), where X is the
associated symmetric space. Γ is a lattice if vol(G/Γ) <∞.

Rank: The real rank of G is the largest n such that euclidean Rn

embeds in X . Higher ranks means Rank(G) ≥ 2. For G = SLn(R),
Rank(G ) = n − 1.



Hyperbolic spaces, G = SO(n, 1):

Fundamental groups of hyperbolic surfaces are left-orderable.

A conjecture of Boyer-Gordon-Watson, relates left-orderability of
fundamental groups of 3-manifolds with taut foliations and Floer
homology. See a lecture of Nathan Dunfield on his webpage.

The fundamental group of a hyperbolic 3-manifold is virtually left
orderable.

Other rank one symmetric spaces:

An example of a RFRS lattice in complex hyperbolic plane by
Agol-Stover is left-orderable. No examples in quaternionic
hyperbolic, or Cayley plane are known to be left-orderable.



Higher rank symmetric spaces

Zimmer program: Every smooth action on a manifold of an
irreducible lattice in higher rank comes from a nice algebraic
construction.
Example: SLn(Z) acts in Rn linearly and projectively in Pn−1.
Zimmer program says Φ : SLn(Z)→ Diff(Mn−1), then M = Pn−1

and action is standard.

For Homeo(M) very few things are known, Homeomorphisms are
dynamically difficult.



Our main result concerns irreducible lattices in higher rank:

An irreducible lattice Γ in a connected semi-simple Lie group G of
rank at least two is left-orderable iff Γ is torsion free and there

exists a surjective morphism G → ˜PSL(2,R).

I Dave Witte Morris and Witte Morris-Lifschitz proved this theorem
for most (if not all) non-uniform lattices.



Example 1: SL3(Z) is not left-orderable.

Example 2: SL(2,Z(
√

2)) embeds as a lattice in SL2(R)× SL2(R)
via

A→ (A, σ(A)),

where σ(a + b
√

2) = a− b
√

2. Therefore SL(2,Z(
√

2)) is not
left-orderable.

Example 3: Passing to the universal covering in example 2 one
gets a left-orderable lattice of higher rank.

Remark: Margulis showed all lattices in higher rank are arithmetic.
So our theorem is mainly about groups similar to example 2.



A theorem of Ghys (1999):

If Γ is a lattice in a connected semi-simple Lie group G of rank at
least two and Γ→ Homeo+(S1) is an action, then:

1. Either Γ has a finite orbit on S1.

2. Or there exists a surjective morphism G → PSL(2,R).

I This result was also proven by Burger-Monod around the same time
for many lattices. Navas and Rezhnikov proved that any group with
property T do not act smoothly in S1. Ghys Theorem was
generalized by Bader-Furman for some non-linear groups.



Strategy of proof: Assume G simple. Argue by contradiction.
Assume Γ acts in R minimally.

Goal: Show Γ preserves a measure on R. This implies Γ is
conjugated to an action by translations. Γ→ Z, contradiction.

Suspension space (As in Nick Miller’s talk):

Y := (G × R)

/
Γ with (g , t) ∼ (gγ−1, γ(t)), γ ∈ Γ

I Y is an R-bundle over G/Γ. G acts on Y .

I Γ preserves a measure in R iff G preserves a measure on Y .



Stiffness 1: Construct a G -stationary measure on Y and show is
G -invariant.

Stiffness 2: Construct a P-invariant measure on Y and show is
G -invariant.

Both properties are equivalent by Furstenberg correspondence.

We take∗ P-invariant measure on Y and show is G -invariant.



Philosophy: Higher rank abelian (hyperbolic) actions have rigidity.
Understand dynamics of A-action in Y and show G -invariance.

Remark 1: This strategy was used in work of
Brown,Rodriguez-Hertz,Wang (2014) about stiffness of actions of
lattices. This was later applied by Brown, Fisher, Hurtado in the
solution of Zimmer’s conjecture (2016).

Remark 2: Our method follows same philosophy but avoids use of
entropy and Ledrappier-Young formula.

Big problems: R is not compact. Action is not smooth.



Theorem (Deroin’s space of almost-periodic actions (2011))

For a left orderable group Γ, there exists a compact space D with a
one dimensional lamination such that:

1. Γ acts on D and preserve each leaf.

2. The action is Lipschitz in each one dimensional leaf.

3. Any action∗ of Γ without a discrete orbit in R is conjugate to
the action of Γ in a leaf of D.

Warning: D is in general infinite dimensional and its size is related to
the possible left-orders of Γ.
Remark: D is related to space of orders constructed* by Ghys.



Remark 1: For Γ lift of action by homeomorphisms of S1, D
contains a copy of S1.

Example 1: For Γ = {a, b|aba−1 = b2}.

Example 2: For Γ = Z2, D consist of actions by translations. D
can be taken topologically to be S1 × S1.



Some other applications of D:

1. A left orderable, amenable group has surjection to Z.
(Witte-Morris).

2. Understanding of Hyde-Lodha ’s example of f.g. simple left
orderable group. (Triestino-Matte Bon)

3. Rigidity of actions of Thompson’s groups and other related
work. (Rivas, Matte Bon, Lodha, Triestino).



Random walks by homeomorphisms of R:

Suppose µ is a finitely supported, symmetric measure on Γ.
Assume Γ fixed point free. Fix p ∈ R. Consider the random walk:

Xn(p) = g(Xn−1(p))

g is chosen as determined by µ.

What happen as n→∞?



Theorem (Deroin-Kleptsyn-Navas-Parwani (2012))

1. For all p ∈ R, lim supXn(p) =∞ and lim inf Xn(p) = −∞
almost surely.

2. There exists a stationary Radon measure in R. (unique* for
minimal action).

3. Under necessary assumptions**: For all p, q ∈ R
limXn(p)− Xn(q) = 0.



DNKP Theorem implies that up to conjugation, Lebesgue is
stationary: For all x , y ∈ R, x − y =

∑
µ(γ)(γ(x)− γ(y)),

moreover:

1. Lipschitz: |γ(x)− γ(y)| ≤ 1
µ(γ) |x − y |,

2. Bounded displacement and non-triviality:

∀x , 1

Cµ
≤
∑

µ(γ)|γ(x)− x | ≤ Cµ

3. Harmonicity: ∀x , x =
∑
µ(γ)γ(x).

D := {(Φ, p)|p ∈ R, Φ : Γ→ Homeo+(R) satisfying 1), 2) and 3)}/ ∼

The equivalence relation ∼ is defined by translations:
(Φ, p) ∼ (T tΦT−t , p + t).
There is an R-flow in D sending (Φ, p) to (Φ, p + t).



Thank you and have a nice week.



Ideas of proof of main theorem Let X = (G × D)/Γ be the
suspension space for the Γ action on D. X is a G -space.
Fix a maximal compact subgroup K ⊂ G , and let mG be a
probability measure on G which is

I absolutely continuous wrt Haar.

I invariant by left and right multiplications by K , and

I symmetric.

A general machinery shows that there exists on X a measure mX

which is mG -stationary, namely which satisfies the convolution
equation

mG ?mX =

∫
g∗mX mG (dg) = mX .

Our goal is to establish that mX is indeed G -invariant; we construct
D, X and mX are constructed in such a way that mX is ergodic
and conditionals measures along leafs of D are abs. continuous
with respect to Lebesgue. For constructing D, we choose µ in Γ a
dicretization probability measure for the Brownian motion in the
symmetric space K\G . (G/P is the poisson boundary of (Γ, µ)).



Weyl chambers Consider the case G = SL(3,R). We set
K = SO(3,R), and let A ⊂ G = SL(3,R) be the subgroup of diagonal
matrices with positive coefficients. Each a ∈ lie(A) ' R2 determines a
solvable subgroup Pa = ANa, where Na is the strong unstable foliation of
a:

Na := {b ∈ G | etabe−ta →t→−∞ eG}.

For generic a’s, there are only six possibilities for the Na’s, which defines

a decomposition of A into six Weyl chambers:



PW-invariant measures

For each Weyl chamber W, we have the Iwasawa decomposition
G = KPW . Applying Furstenberg’s Poisson formula to the
function g 7→ g∗mX , which is harmonic and bounded (since mX is
stationary), one proves that:

There exists a unique probability measure mWX on X which satisfies

I mWX is PW -invariant and PW -ergodic,

I the K -average of mWX wrt the normalized Haar measure on K
equals mX .



Global contraction property

The lamination defined by the flow T on the quasi-periodic space
Z produces a one dimensional oriented lamination L on the
suspension space X , which is invariant by the G -action.

We say that an element a ∈ lie(A) has the global contraction
property wrt some probability measure m on X if for m-a.e.
x ∈ X , the flow associated to a contracts globally the leaf L(x) in
the sense that

d(eta(y), eta(z))→t→+∞ 0 for every y , z ∈ L(x).



Lyapunov exponents

For each Weyl chamber W, there exists an open half-space in
lie(A) consisting of elements whose exponential have the global

contraction property wrt to mWX . Moreover, this half-space
intersects the interior of W.

This half-space is determined by a Lyapunov exponent functional being

negative. The Lyapunov exponent is the exponential rate of the

derivative in the direction of L of an element of A. It is linear functional

in lie(A) and is denoted by χW : lie(A)→ R.



Propagating invariance

Assume that W,W ′ are two adjacent Weyl chambers, and denote
by aW,W ′

a non zero element in W ∩W ′. Assume that the flow a
has the global contraction property wrt mWX . Then mWX = mW

′
X .



Idea of the proof main Lemma: Let a be an element of
W ∩W ′. Asume mWX , mW

′
X ergodic. We show there are two

Birkhoff generic points x1, x2 for mWX and mW
′

X with almost the
same ergodic averages.
There is a nice relation between mWX and mW

′
X , they are related

via: k∗mWX and mW
′

X for k ∈ K . (k is an element of the Weyl
group). This allow us to find x1, x2 generic in the same (G × R)/Γ
leaf of X . As both measures are Na-invariant, one can change the
a-future of πG/Γ(x1) to almost coincide with the future of πG/Γx2.
More formally, there exists n1, n2 ∈ Na such that:

lim
t→∞

dG/Γ(etan1πG/Γ(x1), etan2πG/Γ(x2)) < ε

Using the global contraction property we have
lim dX (etan1x1, e

tan2x2) < ε and we are done because n1x1 and
n2x2 can be chosen Birkhoff generic.



Thank you!


