Reading group on Will Johnson's dp-finite fields Modular lattices and cube-rank (9.1-9.3 in dp-finite fields I)

Pablo Cubides Kovacsics

08.10.2020

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The goal

Introduce the cube rank on a modular lattice and show it is the "minimal subadditive rank".

To that end

- ▶ introduce the notion of modular lattice;
- ▶ define a relative independence relation on modular lattices (9.1-9.2 [DpI]);
- ▶ introduce cubes, the cube rank, and an abstract notion of rank on modular lattices;
- ▶ show (under a finiteness assumption) that the cube rank is minimal among ranks in modular lattices (9.3, [DpI]).

Lattices

Definition

A **lattice** is a partially ordered set (P, \leq) in which every two elements $x, y \in P$ have a supremum (join) denoted by $x \lor y$, and an infimum (meet) denoted by $x \land y$.

Alternatively, one can define a lattice as an algebraic structure (P, \lor, \land) (subject to natural axioms for \lor and \land) and recover the order by

$$x \leqslant y \Leftrightarrow x = x \land y \Leftrightarrow x \lor y = y.$$

A sublattice is a substructure with respect to the algebraic definition (i.e. a subset closed under join and meet).

ション ふゆ く は く は く む く む く し く

Lattices

Examples:

- Any linear order (P, \leqslant) is a lattice $(x \land y = \min\{x, y\}$ and $x \lor y = \max\{x, y\})$.
- Given a set A, $(\mathcal{P}(A), \subseteq)$ is a lattice $(A \land B = A \cap B, A \lor B = A \cup B)$.
- ▶ If cl is a closure operator on a set M, then the set of cl-closed subsets of M ordered by inclusion forms a lattice $(A \land B = A \cap B \text{ and } A \lor B = \operatorname{acl}(A \cup B))$.
- ▶ If (G, +) is a group, then Sub(G) the subgroups of G ordered by inclusion is a lattice $(A \land B = A \cap B \text{ and } A \lor B = \langle A \cup B \rangle)$. If (G, +) is abelian and (G, +, ...) is a first order expansion, then the definable subgroups of G form a sublattice of Sub(G).
- ▶ If R is a ring and M is an R-module, then $(\operatorname{Sub}_R(M), \subseteq)$ is a lattice $(A \land B = A \cap B \text{ and } A \lor B = A + B)$.

ション ふゆ く は く は く む く む く し く

Modular lattices

Definition

A lattice (P, \leq) is **modular** is it satisfies for all $a, b, x \in P$

$$a \leqslant b \Rightarrow (x \lor a) \land b = (x \land b) \lor a.$$

Examples:

- ▶ Any linear order (P, \leq) is a modular lattice.
- ▶ $(\mathcal{P}(A), \subseteq)$ is a modular lattice (it is even distributive).
- ▶ if cl is a closure operator on A, then the lattice of cl-closed sets is not necessarily a modular lattice.
- ▶ If G is an abelian group, then $(\operatorname{Sub}(G), \subseteq)$ is modular (and hence also the sublattice of definable subgroups). The same holds for $(\operatorname{Sub}_R(M), \subseteq)$.

Modular lattices

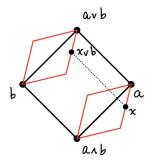
Let (P, \leq) be a lattice. Given $a, b \in P$, the interval [a, b] is defined is as $\{x \in P : a \leq x \text{ and } x \leq b\}$. Every interval is sublattice of P.

Theorem

A lattice (P, \leqslant) is modular if and only if for all $a, b \in P$ the map

$$\begin{split} [a \wedge b, a] \to [b, a \vee b] \\ x \mapsto x \vee b \end{split}$$

is a lattice isomorphism with inverse given by $x \mapsto a \wedge x$.



From now on we let (P, \leq) be a modular lattice. We also set $[n] \coloneqq \{1, \ldots, n\}$ for $n \in \mathbb{N}$ (with $[0] = \emptyset$). The following definition is equivalent but slightly different that the one given in [DpI].

Definition

Suppose P has a minimal element ⊥. A sequence (a₁,..., a_n) of P is said to be independent if for every k

$$a_k \wedge \bigvee_{i \neq k} a_i = \bot.$$

• (P not necessarily with minimal element) For $b \in P$, we say $(a_1, \ldots, a_n) \in P^n$ is **independent over** b if $b \leq a_i$ for each $i \in [n]$ and the set is independent in the sublattice $\{x \in P : b \leq x\}$ (b being the minimal element).

Definition

An *n*-cube in *P* is a family $\{a_S\}_{S\subseteq[n]}$ of elements of *P* such that $S \mapsto a_S$ is a lattice homomorphism from $\mathcal{P}([n])$ to *P*. A strict *n*-cube is an *n*-cube such that this homomorphism is injective. The **top** and **bottom** of an *n*-cube are the elements a_{\emptyset} and $a_{[n]}$, respectively.

Proposition (Proposition 9.15, DpI)

Let b be an element of P.

- 1. If $\{a_S\}_{S\subseteq[n]}$ is an n-cube with bottom b, then $a_{\{1\}}, \ldots, a_{\{n\}}$ is an independent sequence over b.
- 2. This establishes a bijection from the collection of n-cubes with bottom b to the collection of independent sequences over b of length n.
- 3. If a_1, \ldots, a_n is an independent sequence over b, the corresponding n-cube is strict if and only if every a_i is strictly greater than b.

Remark

A dual statement of the above proposition also holds (see Proposition 9.16 [DpI]).

A couple of words about the proof.

- ▶ Points (1) and (3) are easy.
- For point (2), injectivity is also easy and all the work is hidden showing surjectivity. Assuming (a₁,..., a_n) is an independent sequence over b, one sets a_∅ := b and a_S := V_{i∈S} a_i for Ø ≠ S ⊆ [n]. We need to show

 a_{S∪S'} = a_S ∨ a_{S'}
 a_{S∪S'} = a_S ∧ a_{S'}

Point (i) follows from the definition of a_S , and point (ii) follows from the following two lemmas.

Lemma (Lemma 9.7 [DpI])

Let (c_1, c_2, c_3) be independent over b. Then $c_1 = (c_2 \vee c_1) \land (c_3 \vee c_1)$.

Lemma (Lemma 9.6 [DpI])

Let (a_1, \ldots, a_n) be independent over b and S_1, \ldots, S_m be disjoint subsets of [n]. Then $(a_{S_1}, \ldots, a_{S_m})$ is independent over b.

The first one uses modularity and independence. The second one needs a bit of work after unravelling definitions (maybe I missed something here, but as far as I can see one needs to show on the way the following particular case of (ii) above: if $i, j \in [n]$ are different, then $a_{[n]\setminus\{i\}} \wedge a_{[n]\setminus\{j\}} = a_{[n]\setminus\{i,j\}}$).

Definition

The **cube rank** of a modular lattice (P, \leq) (written $\operatorname{rk}^{\diamond}(M)$) is the supremum of $n \in \mathbb{Z}$ such that a strict *n*-cube exists in *P*, or ∞ if there is no supremum. If $a \geq b$ are two elements of *P*, the **cube rank** $\operatorname{rk}^{\diamond}(a/b)$ is the cube rank of the sublattice [b, a].

Remark

The cube rank is called the "reduced rank" in [DpI] and [DpIII] and denoted by rk_0 . I followed the notation and terminology from the report.

Goal: show that the cube rank is "the minimal subadditive rank on a modular lattice".

ション ふゆ く は く は く む く む く し く

A subadditive rank on a modular lattice is a function assigning a non-negative integer rk(a/b) to every pair $a \ge b$, satisfying the following axioms

1.
$$\operatorname{rk}(a/b) = 0$$
 if and only if $a = b$.

2. If $a \ge b \ge c$, then

$$rk(a/c) \ge rk(a/b)$$

$$rk(a/c) \ge rk(b/c)$$

$$rk(a/c) \le rk(a/b) + rk(b/c).$$

3. If a, b are arbitrary, then

$$\begin{aligned} \operatorname{rk}(a/a \wedge b) &= \operatorname{rk}(a \vee b/b) \\ \operatorname{rk}(b/a \wedge b) &= \operatorname{rk}(a \vee b/a) \\ \operatorname{rk}(a \vee b/a \wedge b) &= \operatorname{rk}(a/a \wedge b) + \operatorname{rk}(b/a \wedge b). \end{aligned}$$

A weak subadditive rank is a function satisfying the axioms other than (1).

Goal: show that the cube rank is "the minimal subadditive rank on a modular lattice". This corresponds formally to

Proposition

Let (P, \leq) be a modular lattice.

- 1. If the cube rank $rk^{\diamond}(a/b)$ is finite for all pairs $a \ge b$, then rk^{\diamond} is a (non-weak) subadditive rank.
- 2. If there is a subadditive rank rk on P, then $rk^{\diamond}(a/b) \leq rk(a/b) < \infty$ for all $a \geq b$.

Some comments on the proof: Part (2) goes by induction and it's not difficult. Most work goes on part (1), and particularly to show

$$\begin{aligned} \mathrm{rk}^{\diamond}(a/c) &\leq \mathrm{rk}^{\diamond}(a/b) + \mathrm{rk}^{\diamond}(b/c) \\ \mathrm{rk}^{\diamond}(a \lor b/a \land b) &= \mathrm{rk}^{\diamond}(a/a \land b) + \mathrm{rk}^{\diamond}(b/a \land b). \end{aligned}$$

The first one follows form the following lemma

Lemma (Lemma 9.22, [DpI])

Let $x \leq y \leq z$ be three elements of P. If there is a strict n-cube $\{a_S\}_{S\subseteq[n]}$ in [x, z], then we can write $n = m + \ell$ and find a strict m-cube in [x, y] and a strict ℓ -cube in [y, z].

The proof uses modularity and the above correspondence between n-cubes and independent sequences of length n (and its dual statement).

The condition

$$\mathrm{rk}^\diamond(a \vee b/a \wedge b) = \mathrm{rk}^\diamond(a/a \wedge b) + \mathrm{rk}^\diamond(b/a \wedge b).$$

is achieved using the following lemma:

Lemma (Lemma 9.18, [DpI])

- 1. Let P_1 and P_2 be two modular lattices. If the reduced rank of P_1 is at least n and the reduced rank of P_2 is at least m, then the reduced rank of $P_1 \times P_2$ is at least n + m.
- 2. If P_1 is a modular lattice and P_2 is a sublattice, the reduced rank of P_1 is at least the reduced rank of P_2 .
- 3. If a, b are two elements of a modular lattice (P, \leq) , then there is an injective lattice homomorphism

$$\begin{split} [a \wedge b, a] \times [a \wedge b, b] \to [a \wedge b, a \vee b] \\ (x, y) \mapsto x \vee y. \end{split}$$

4. If a, b are two elements of a modular lattice (P, \leq) such that $\operatorname{rk}^{\diamond}(a/a \wedge b) \geq n$ and $\operatorname{rk}^{\diamond}(b/a \wedge b) \geq m$, then $\operatorname{rk}^{\diamond}(a \vee b/a \wedge b) \geq n + m$.

References I

Will Johnson, **Dp-finite fields i: infinitesimals and positive characteristic**, 2019, arXiv:1903.11322 [math.LO].