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The goal

Introduce the cube rank on a modular lattice and show it is the “minimal subadditive
rank”.

To that end

I introduce the notion of modular lattice;

I define a relative independence relation on modular lattices (9.1-9.2 [DpI]);

I introduce cubes, the cube rank, and an abstract notion of rank on modular
lattices;

I show (under a finiteness assumption) that the cube rank is minimal among
ranks in modular lattices (9.3, [DpI]).



Lattices

Definition
A lattice is a partially ordered set (P,6) in which every two elements x, y ∈ P have
a supremum (join) denoted by x ∨ y, and an infimum (meet) denoted by x ∧ y.

Alternatively, one can define a lattice as an algebraic structure (P,∨,∧) (subject to
natural axioms for ∨ and ∧) and recover the order by

x 6 y ⇔ x = x ∧ y ⇔ x ∨ y = y.

A sublattice is a substructure with respect to the algebraic definition (i.e. a subset
closed under join and meet).



Lattices

Examples:

I Any linear order (P,6) is a lattice (x ∧ y = min{x, y} and x ∨ y = max{x, y}).
I Given a set A, (P(A),⊆) is a lattice (A ∧B = A ∩B, A ∨B = A ∪B).

I If cl is a closure operator on a set M , then the set of cl-closed subsets of M
ordered by inclusion forms a lattice (A ∧B = A ∩B and A ∨B = acl(A ∪B)).

I If (G,+) is a group, then Sub(G) the subgroups of G ordered by inclusion is a
lattice (A∧B = A∩B and A∨B = 〈A∪B〉). If (G,+) is abelian and (G,+, . . .)
is a first order expansion, then the definable subgroups of G form a sublattice
of Sub(G).

I If R is a ring and M is an R-module, then (SubR(M),⊆) is a lattice (A ∧B =
A ∩B and A ∨B = A + B).



Modular lattices

Definition
A lattice (P,6) is modular is it satisfies for all a, b, x ∈ P

a 6 b⇒ (x ∨ a) ∧ b = (x ∧ b) ∨ a.

Examples:

I Any linear order (P,6) is a modular lattice.

I (P(A),⊆) is a modular lattice (it is even distributive).

I if cl is a closure operator on A, then the lattice of cl-closed sets is not necessarily
a modular lattice.

I If G is an abelian group, then (Sub(G),⊆) is modular (and hence also the
sublattice of definable subgroups). The same holds for (SubR(M),⊆).



Modular lattices
Let (P,6) be a lattice. Given a, b ∈ P , the interval [a, b] is defined is as {x ∈ P :
a 6 x and x 6 b}. Every interval is sublattice of P .

Theorem
A lattice (P,6) is modular if and only if for all a, b ∈ P the map

[a ∧ b, a]→ [b, a ∨ b]

x 7→ x ∨ b

is a lattice isomorphism with inverse given by x 7→ a ∧ x.



Independence

From now on we let (P,6) be a modular lattice. We also set [n] := {1, . . . , n} for
n ∈ N (with [0] = ∅). The following definition is equivalent but slightly different
that the one given in [DpI].

Definition

I Suppose P has a minimal element ⊥. A sequence (a1, . . . , an) of P is said to be
independent if for every k

ak ∧
∨
i 6=k

ai = ⊥.

I (P not necessarily with minimal element) For b ∈ P , we say (a1, . . . , an) ∈ Pn

is independent over b if b 6 ai for each i ∈ [n] and the set is independent in
the sublattice {x ∈ P : b 6 x} (b being the minimal element).



Independence

Definition
An n-cube in P is a family {aS}S⊆[n] of elements of P such that S 7→ aS is a lattice
homomorphism from P([n]) to P . A strict n-cube is an n-cube such that this
homomorphism is injective. The top and bottom of an n-cube are the elements a∅
and a[n], respectively.

Proposition (Proposition 9.15, DpI)

Let b be an element of P .

1. If {aS}S⊆[n] is an n-cube with bottom b, then a{1}, . . . , a{n} is an independent
sequence over b.

2. This establishes a bijection from the collection of n-cubes with bottom b to the
collection of independent sequences over b of length n.

3. If a1, . . . , an is an independent sequence over b, the corresponding n-cube is
strict if and only if every ai is strictly greater than b.

Remark
A dual statement of the above proposition also holds (see Proposition 9.16 [DpI]).



Independence

A couple of words about the proof.

I Points (1) and (3) are easy.

I For point (2), injectivity is also easy and all the work is hidden showing
surjectivity. Assuming (a1, . . . , an) is an independent sequence over b, one sets
a∅ := b and aS :=

∨
i∈S ai for ∅ 6= S ⊆ [n]. We need to show

(i) aS∪S′ = aS ∨ aS′

(ii) aS∩S′ = aS ∧ aS′

Point (i) follows from the definition of aS , and point (ii) follows from the
following two lemmas.



Independence

Lemma (Lemma 9.7 [DpI])

Let (c1, c2, c3) be independent over b. Then c1 = (c2 ∨ c1) ∧ (c3 ∨ c1).

Lemma (Lemma 9.6 [DpI])

Let (a1, . . . , an) be independent over b and S1, . . . , Sm be disjoint subsets of [n].
Then (aS1 , . . . , aSm) is independent over b.

The first one uses modularity and independence. The second one needs a bit of work
after unravelling definitions (maybe I missed something here, but as far as I can see
one needs to show on the way the following particular case of (ii) above: if i, j ∈ [n]
are different, then a[n]\{i} ∧ a[n]\{j} = a[n]\{i,j}).



Cube-rank and additivity

Definition
The cube rank of a modular lattice (P,6) (written rk�(M)) is the supremum of
n ∈ Z such that a strict n-cube exists in P , or ∞ if there is no supremum. If a > b
are two elements of P , the cube rank rk�(a/b) is the cube rank of the sublattice
[b, a].

Remark
The cube rank is called the “reduced rank” in [DpI] and [DpIII] and denoted by
rk0. I followed the notation and terminology from the report.

Goal: show that the cube rank is “the minimal subadditive rank on a modular
lattice”.



Cube-rank and additivity

A subadditive rank on a modular lattice is a function assigning a non-negative
integer rk(a/b) to every pair a ≥ b, satisfying the following axioms

1. rk(a/b) = 0 if and only if a = b.

2. If a ≥ b ≥ c, then

rk(a/c) ≥ rk(a/b)

rk(a/c) ≥ rk(b/c)

rk(a/c) ≤ rk(a/b) + rk(b/c).

3. If a, b are arbitrary, then

rk(a/a ∧ b) = rk(a ∨ b/b)

rk(b/a ∧ b) = rk(a ∨ b/a)

rk(a ∨ b/a ∧ b) = rk(a/a ∧ b) + rk(b/a ∧ b).

A weak subadditive rank is a function satisfying the axioms other than (1).



Cube-rank and additivity

Goal: show that the cube rank is “the minimal subadditive rank on a modular
lattice”. This corresponds formally to

Proposition

Let (P,≤) be a modular lattice.

1. If the cube rank rk�(a/b) is finite for all pairs a ≥ b, then rk� is a (non-weak)
subadditive rank.

2. If there is a subadditive rank rk on P , then rk�(a/b) ≤ rk(a/b) <∞ for all
a ≥ b.



Cube-rank and additivity

Some comments on the proof: Part (2) goes by induction and it’s not difficult. Most
work goes on part (1), and particularly to show

rk�(a/c) ≤ rk�(a/b) + rk�(b/c)

rk�(a ∨ b/a ∧ b) = rk�(a/a ∧ b) + rk�(b/a ∧ b).

The first one follows form the following lemma

Lemma (Lemma 9.22, [DpI])

Let x ≤ y ≤ z be three elements of P . If there is a strict n-cube {aS}S⊆[n] in [x, z],
then we can write n = m + ` and find a strict m-cube in [x, y] and a strict `-cube
in [y, z].

The proof uses modularity and the above correspondence between n-cubes and in-
dependent sequences of length n (and its dual statement).



Cube-rank and additivity
The condition

rk�(a ∨ b/a ∧ b) = rk�(a/a ∧ b) + rk�(b/a ∧ b).

is achieved using the following lemma:

Lemma (Lemma 9.18, [DpI])

1. Let P1 and P2 be two modular lattices. If the reduced rank of P1 is at least n
and the reduced rank of P2 is at least m, then the reduced rank of P1 × P2 is at
least n + m.

2. If P1 is a modular lattice and P2 is a sublattice, the reduced rank of P1 is at
least the reduced rank of P2.

3. If a, b are two elements of a modular lattice (P,≤), then there is an injective
lattice homomorphism

[a ∧ b, a]× [a ∧ b, b]→ [a ∧ b, a ∨ b]

(x, y) 7→ x ∨ y.

4. If a, b are two elements of a modular lattice (P,≤) such that rk�(a/a ∧ b) ≥ n
and rk�(b/a ∧ b) ≥ m, then rk�(a ∨ b/a ∧ b) ≥ n + m.
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