Reading group on Will Johnson's Dp-finite fields papers Dp-finite I §9.3, Dp-finite III §6.1

Lynn Scow

California State University, San Bernardino

MSRI, October 2020

1/_9____

Remarks

There are some "Speculative Remarks" in 9.3 of "Dp-finite fields I" that I have not included in today's presentation. Will writes that they provide some motivation, but they are not needed for the main line of the proof.

I plan to present Proposition 9.31 of "Dp-finite fields I" and $\S 6$ of "Dp-finite fields III".

Another interesting remark from Will by email: "I learned recently that "breadth" is the correct name in lattice theory for what I've been calling reduced-rank/cube-rank."

$\S 6$ Dp-finite III

Proposition (6.3)

Let $M = (|M|, \lor, \land, \bot, \top)$ be a bounded modular lattice and n > 1 any integer. The following are equivalent.

1. There is a strict n-cube in M
2. There are
$$a_1, \ldots, a_n \in M$$
 such that for any $1 \le i \le n$,
 $a_1 \lor \cdots \lor a_n \ne a_1 \lor \cdots \lor \hat{a_i} \lor \cdots \lor a_n$
3. There are $a_1, \ldots, a_n \in M$ such that for any $1 \le i \le n$,
 $a_1 \land \cdots \land a_n \ne a_1 \land \cdots \land \hat{a_i} \land \cdots \land a_n$
 $\lor (s) = \mathrel{}^{\mathsf{i}}(1)$: $b_i = \bigwedge a_j$, $c = \bigwedge a_j$. $b_i \ge c$. By assump: $b_i \ge c$.
 $c \models \ldots \models \cdots \models \cdots \models \cdots \models \cdots \models \cdots \models i + i = b_i \land a_k = a_k \ldots \models o$
 $c \models (b_i \lor \cdots \lor b_{k-i}) \land b_k \le a_k \land b_k = c$
 \vdots
 \vdots
 $c \models a_k = \leq a_k$

(') => (2)

Burden

Definition (*inp*-patterns)

inp. An *inp*-pattern in p(x) of depth κ consists of $(a_{\alpha,i})_{\alpha < \kappa, i < \omega}$, $\phi_{\alpha}(x, y_{\alpha})$, and $k_{\alpha} < \omega$ such that

- $\{\phi_{\alpha}(x, a_{\alpha,i})\}_{i < \omega}$ is k_{α} -inconsistent, for each $\alpha < \kappa$, and
- $\begin{array}{l} \underset{\{\varphi_{\alpha}(x, a_{\alpha, f}(\alpha))\}_{\alpha < \kappa} \cup p(x) \text{ is consistent, for any } f: \kappa \to \omega. \end{array} \xrightarrow{\omega} \left\{ \begin{array}{c} \underset{\flat}{} \\ \end{array} \right\}_{\alpha < \kappa} \underbrace{\phi_{\alpha}(x, a_{\alpha, f}(\alpha))}_{\alpha < \kappa} \underbrace{\phi_{\alpha}($

Definition (burden)

Given a partial type p(x), bdn(p) is the supremum of depths of all inp-patterns in p(x). bdn(a/C) = bdn(tp(a/C)).

 \checkmark In calculating the sup: identify every limit cardinal κ with κ^+ and insert an element κ^- directly before κ^+ in the order.

sub-multiplicativity $bdn(a_i) < k_i$ for $k_i \in \omega \Rightarrow bdn(a_0, \ldots, a_{n-1}) < \prod_{i < n} k_i$ burden is sub-multiplicative (Chernikov, 2014) \checkmark $\operatorname{bdn}(p) \leq \operatorname{dp-rk}(p) + [(\operatorname{NIP} T): \operatorname{bdn}(p) = \operatorname{dp-rk}(p)] (\operatorname{Adler}, 2007)$

sub-additivity (NIP T): $bdn(ab) \leq bdn(a) + bdn(b)$ NIP T: dp-rank is sub-additive (Kaplan-Onshuus-Usvyatsov, 2013)

dp-finite \Rightarrow finite burden

4 / 9

«, «2 «3 (2-11/20/13)

CKS Prop 4.5

The following result is from the 2014 Chernikov-Kaplan-Simon paper "Groups and Fields with NTP_2 ".

Definition

T is strong if $bdn(x = x) \leq \aleph_0^-$.

A strong theory must be NTP_2 .

Proposition (4.5)

Let G be a type-definable group and $(G_i \leq G : i < \omega)$ type-definable normal subgroups.

1. If T is strong, then there is some i_0 such that $\left[\bigcap_{i \neq i_0} G_i : \bigcap_{i < \omega} G_i\right] < \infty$. (2. If T is of finite burden, then there is some $n \in \omega$ and $i_0 < n$ such that $\left[\bigcap_{i \neq i_0, i < n} G_i : \bigcap_{i < n} G_i\right] < \infty$.

Proposition 4.5.2 follows from 4.5.1 by sub-multiplicativity of burden.

$$\begin{array}{c} \mathbf{x} \\ \mathbf$$

5/_9____

$\S 6$ Dp-finite III, part 2

Definition

Given two type-definable groups G and H, we say that G is 00-commensurable with $H (G \approx H)$ if $[G : G \cap H] < \infty$ and $[H : G \cap H] < \infty$.

\checkmark Proposition (6.4)

n = bdn(G)

Let G be a definable abelian group with finite burden, and M be the lattice of type-definable subgroups of G, modulo 00-commensurability. Then M is cube-bounded; in fact $rk^{\diamond}(M) \leq bdn(G)$.

The proof uses Proposition 6.3 and CKS Proposition 4.5.2.

Let
$$A_1 \dots A_{n+1}$$
 be type-definable subgroups. $\exists 7$
 $\begin{bmatrix} \cap A_j &: \cap A_j \end{bmatrix} < \infty$
 $j \neq i$
 $j \leq n+1$
 $\ln L^{\circ \circ}$, by Prop 6.3, there is not a Strict (n+1)-cube
"M"
 $= \sum_{r \in O} (M) \leq n = bdn(G).$

§8 of Dp-finite I

\checkmark Theorem (8.4)

Let $(\mathbb{G}, +, ...)$ be a monster-model abelian group of dp-rank $n < \omega$. There is a cardinal κ such that for any type definable subgroup $H < \mathbb{G}$, $(H : H^{00}) < \kappa$ (in any elementary extension of \mathbb{G}).

The proof uses CKS Proposition 4.5.2 as well as some similar ideas from the proof.

Corollary (8.7) $^{\prime}$ Let \mathbb{M} be a field of finite dp-rank. There is a cardinal κ such that for any small model $M \prec \mathbb{M}$ of cardinality at least κ , if J is a type-definable M-linear subspace of \mathbb{M}^k , then $J = J^{00}$. $A \sim \mathbb{B} = (A \cap \mathbb{B})^{\circ\circ} = A \cap \mathbb{B}$

J is assumed to be type-definable over a (small) set of parameters from $\mathbb M.$

7_/_9____

$\S9$ of Dp-finite I

+

In p. 26 of the report, Will writes that the definition $G \wedge H = (G \cap H)^{00}$ "causes too many problems". Over email, he writes: "Specifically, something goes wrong in Lemma 5.7 of Dp-finite fields V if we try to work modulo 00-commensurability."

Thus, the main line of the proof takes the following approach:

Proposition (9.31)

Let \mathbb{M} be a monster-model field, possibly with additional structure, such that dp- $rk(\mathbb{M}) = n < (\omega)$ Let $K \prec \mathbb{M}$ be a small submodel as in Corollary 8.7. Let L_K be the modular lattice of K-linear subspaces of \mathbb{M} , type-definable over (small) parameter sets. Then $rk^{\diamond}(L_K) \leq n$.

$$L = type - definable \quad Subgroups \quad of (M, +)$$

$$L^{\circ\circ} = L/\approx (m \circ d \quad oo - commens vability)$$

$$L_{K} \longrightarrow L \longrightarrow L^{\circ\circ} \quad s_{\circ} \quad L_{K} \subset \circ L^{\circ\circ}$$

$$hvs: \quad rk^{\circ}(L_{K}) \leq rk^{\circ}(L^{\circ\circ}) \leq b dn(M) = dp - rk(M) = n$$

$$T \qquad T$$

$$Prop \quad b \cdot T \quad Dp - TT \qquad since T is NIP$$

8/9___

6 Dp-finite III, part 3

Definition

A multi-valuation ring on a field K is a finite intersection of valuation rings on K.

Proposition (6.2.4 Dp II) *

Let $\mathcal{O}_1, \ldots, \mathcal{O}_n$ be pairwise incomparable valuation rings on a field K, and let $\overline{R} = \bigcap_i \overline{\mathcal{O}_i}$ Every R-submodule of K is of the form $\{x \in K \mid \nu_i(x) > \Xi_i\}$ for certain cuts Ξ_i in the value groups Γ_i .

Corollary (6.7 Dp II)

If R is a multi-valuation ring on a field K, then there is a unique way to write R as a finite intersection of pairwise-incomparable valuation rings on K, $R = O_1 \cap \cdots \cap O_n$.

Lemma (6.5)

Let $R = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_n$ be an intersection of n pairwise incomparable valuation rings on a field K. Then $rk^{\diamond}(Sub_R(K)) = n$.

By (or 6.7, no sub-intersection =
$$O(n + n + n + n)$$

Let $M = Sub_{\mu}(K)$. By Prop 6.3, $rK^{2}(M) \ge n$. Sps $rK^{2}(M) > n$.
Then $\exists A_{0} + A_{n+1} \in M : A_{0} + A_{0} +$

9/9___