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Definition 1.1. Let R be a domain, K = Frac(R), n ∈ N, S ⊂ K.

(1) Then S is a Wn-set iff whenever a0, . . . , an ∈ K, then for some i,

ai ∈
∑
j 6=i ajS.

(2) R is a Wn-ring iff it is a Wn-set as above; it suffices to check the

condition for a0, . . . , an ∈ R. Equivalently, if c−rkR(R) = c−rkR(K) ≤
n.

Definition 1.2. A V -topology is a locally bounded field topology such

that for any B ⊆ K×, B−1 is bounded iff K \B ∈ τ .

Kowalski-Dürbaum: comes from an archimedean absolute value, or

from a non-trivial valuation.
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1.3. Fact from [PZ]. Let τ be an ω-complete topology on the field K.

If τ is locally bounded/locally bounded field/V-topology, then τ = τR
for some subring R with Frac(R) = K/and R is local/a valuation

ring.

Proposition 3.1 Let R be an integral domain, K = Frac(R) 6= R.

Then τR, with neighbourhood basis {cR | c ∈ K×} is a Hausdorff non-

discrete, locally bounded ring topology on K. Moreover, if R is a

Wn-ring, then τR is a field topology.

Note that if d ∈ R, then dcR ⊂ cR. The first assertions follow easily.
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We know that J(R) 6= 0 (because R/J(R) is the direct product of at

most n fields), and R 6= K. We need to show that if I is an ideal of

R there is a non-zero ideal I ′ of R such that

(1 + I ′)−1 ⊆ 1 + I.

Let I ′ = I ∩ J(R); then I ′ 6= 0 and one checks that if x ∈ I ′, then

1 + x ∈ R×, whence −x(1 + x)−1 ∈ I and (1 + x)−1 ∈ 1 + I.
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Definition 1.4. A Wn-topology on a field K is a Hausdorff non-

discrete locally bounded ring topology on K such that for every neigh-

bourhood U of 0 there is c ∈ K× such that cU is a Wn-set. This is a

local property.

Proposition 3.6. Let R be a non-trivial Wn-ring with fraction field

K. Then the induced field topology is a Wn-topology.

Proof. The bounded neighbourhood R is a Wn-set.
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Lemma 3.7. Let K be a field with a Wn-topology. Suppose that K is

ω-complete. Then the topology is induced by a Wn-ring R. Moreover,

given any bounded set S, we may assume that S ⊆ R.

Proof. Let U be a bounded neighbourhood of 0; for some c ∈ K×,

cU is a Wn-set. Let R be the subring of K generated by S ∪ cU . It

is an increasing union of countably many bounded sets, hence by ω-

completeness, it is bounded. So R is a bounded Wn-set which induces

the topology.
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Corollary 3.8 Let K be a field with a ring topology τ .

(1) τ is a Wn-topology iff (K, τ) is locally equivalent to a field with a

topology induced by a Wn-ring R.

(2) If τ is a Wn-topology, then τ is a field topology.

(3) A Wn-topology is a Wm-topology for m > n.

(4) τ is a W1-topology iff τ is a V -topology.
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Proposition 4.1 Let τ be a Wn-topology on K (a highly saturated
field). Suppose there is a bounded neighbourhood U ⊆ K of 0, which
is ∨-definable or ∧-definable, and is an additive subgroup of K.
Then U is co-embeddable with a definable set, and τ is a definable
topology.

Proof. Co-embeddable: A and B are co-embeddable iff there are
c, d ∈ K× such that cA ⊆ B ⊆ dA.
We may assume that U is a Wn-set. Let m be minimal such that U
is Wm, and let b1, . . . , bm ∈ K such that for all i, bi /∈

∑
j 6=i bjU .

Because U is a subgroup of K, so are each of the finite sums above,
and therefore they are open and closed for the topology.

Let S be the set of x ∈ K such that for some i, bi ∈ xU +
∑
j 6=i bjU . If

U is ∨-definable, so is S, and K \ S is ∧-definable. By definition and
because U is a Wm-set, if x /∈ S, then x ∈

∑
i biU .
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Claim There is V ∈ τ such that V ∩ S = ∅.
We know that for every i, bi is not in the closed set

∑
j 6=i bjU ; hence

there is some small V ∈ τ such that (bi + V · U) ∩
∑
j 6=i bjU = ∅.

Take such a V which works for all bi. If x ∈ V ∩ S, then for some i,

bi ∈ xU +
∑
j 6=i bjU , and

∅ 6= (bi + xU) ∩
∑
j 6=i

bjU ⊆ (bi + V · U) ∩
∑
j 6=i

bjU = ∅.

We then get V ⊆ K \ S ⊆
∑
i biU . Now,

∑
i biU is bounded, whence

K \ S ∈ τ ∩ τ⊥, i.e., it is co-embeddable with U . One of {U,K \ S}
is ∨-definable, the other is ∧-definable. This implies that U is co-

embeddable with a definable D: say U is ∨-definable; wma U ⊆ K \S;

by compactness there is a definable D with U ⊆ D ⊆ K \ S.
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Corollary. (Prop 4.6). Let R be a non-trivial ∨-definable Wn-ring on

K. Then R is co-embeddable with a definable set D, and the topology

is definable.

If R is a ∨-definable Wn-ring on K, this applies in particular to:

The integral closure R̃ of R;

If P is a maximal ideal of R, the localization RP.

(They are Wn because they contain R).
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Theorem 4.10. Let (K, τ) be a field with a Wn-topology.

(1) There is at least one V -topological coarsening of τ .

(2) There are at most n such coarsenings.

(3) If (K, τ) is a definable topology (wrt to some structure on K),

then every V -topological coarsening of τ is definable.
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Theorem 4.10. Let (K, τ) be a field with a Wn-topology.
(1) There is at least one V -topological coarsening of τ .

Proof. (1) Let D ⊆ K be a bounded neighbourhood of 0 which is
a Wn-set, let (K∗, D∗) be a highly saturated elementary extension of
(K,D). Then D∗ defines a Wn-topology on K∗ which is ω-complete.
If R is the subring of K∗ generated by D∗, then R is ∨-definable and
bounded; sor R and D∗ define the same topology on K∗. Let R̃ be the
integral closure of R, P a maximal ideal of R̃; so the localization R̃P
is ∨-definable, a valuation ring, and it therefore induces a V-topology
on K∗, which is coarser than the one induced by D∗. This topology
is definable (by 4.1). Hence, the same is true of (K,D): it has a
definable V-topology which is coarser than the topology defined by
D.
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Theorem 4.10. Let (K, τ) be a field with a Wn-topology.

(1) There is at least one V -topological coarsening of τ .

(2) There are at most n such coarsenings.

(2) Let σ1, . . . , σm be distinct V-topological coarsenings of τ ; we want

m ≤ n.

Via an ultraproduct construction, we may assume that the topologies

σ1, . . . , σm are ω-complete. We know that τ is induced by a subring

R, of weight ≤ n, and that R is bounded with respect to the σi. By

Lemma 3.7, there is a valuation ring Oi containing R and inducing

σi; since the topologies are pairwise distinct, the Oi must be incom-

parable, and therefore m ≤ n.
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Theorem 4.10. Let (K, τ) be a field with a Wn-topology.
(1) There is at least one V -topological coarsening of τ .
(2) There are at most n such coarsenings.
(3) If (K, τ) is a definable topology (wrt to some structure on K),
then every V -topological coarsening of τ is definable.

(3) Let σ be a V-topological coarsening of τ . Let D and B be bounded
neighbourhoods of 0 for τ and σ respectively, with D definable. Wma
D is a Wn-set, B is a W1-set. Since σ ⊂ τ , D is also σ-bounded. Re-
placing B by B∪D, wma D ⊆ B. Consider an ultrapower (K∗, D∗, B∗),
RD and RB the associated subrings generated by D∗ and B∗. Then
RD is a Wn-subring of K∗, ∨-definable in (K∗, D∗), and co-embeddable
with D∗;
RB is a W1-subring of K∗, ∨-definable in (K∗, B∗), co-embedddable
with B∗.
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RB ⊇ RD. As RB is a valuation ring, it contains R̃D; But R̃D is an in-

tersection of valuation rings O1, . . . ,On, hence RB must contain some

Oi.

So Oi is ∨-definable in (K∗, D∗). By Prop. 4.6, there is a definable

C ⊂ K∗ which is co-embeddable with Oi. Note that RB ⊃ Oi implies

they induce the same topology, and therefore C,Oi, RB, B∗ are pairwise

co-embeddable.

Therefore there is a set C0 definable in (K,D) which is co-embeddable

with B (work in the structure (K,D,B)). So, σ is definable in (K,D).
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Proposition 4.11. Let (K, τ, . . .) be a sufficiently saturated field, and

τ a definable Wn-topology on K. Then τ is induced by a ∨-definable,

externally definable Wn-ring R on K.

Proof. Let D be a definable bounded neighbourhood of 0 which is

a Wn-set. Wma the language is countable, and we let K ≺ K, K

countable, over which D is definable. Let R be the union of all K-

definable bounded sets. Then R is a ∨-definable ring, which contains

D, so is a Wn-ring, and is bounded. So R induces the topology

(bounded neighbourhood).
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Claim. If S1, . . . , Sr are K-definable bounded subsets of K, then there

is c ∈ K× such that
⋃
Si ⊆ cD.

There is such a c ∈ K×, because
⋃
Si is bounded. But since everything

is K-definable, such a c exists in K.

So, R =
⋃
c∈K× cD, a directed union. So R is externally definable: if

ϕ(y) defines D, consider the following partial type over K:

Σ(x) = {∀y ϕ(c−1y)→ ϕ(x−1y) | c ∈ K} ∪
{∃y ϕ(c ∈ y) ∧ ¬ϕ(x−1y) | cD 6⊂ R}.

If c∗ realises Σ in some K ≺ K∗, then c∗ϕ(K∗) ∩ K = R.
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Definition 1.5. Let K be a field. A golden lattice on K is a col-

lection Λ of additive subgroups of K, which contains {0} and K but

also other elements, is closed under (finite) intersection, sum and

scalar multiplication, has finite cube rank, and the set Λ+ = Λ \ {0}
is closed under intersection.

Theorem 5.9. If Λ is a golden lattice on K, then Λ+ is a neigh-

bourhood basis of a W -topology on K. If Λ has rank r, this is a

Wr-topology.
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Proof. We check the relevant axioms, U, V,W will range over Λ+.

First, Λ+ is a filter base, and is non-discrete. Let U ∈ Λ with

0 < U < K; if 0 6= a ∈ K, and b ∈ K \ U , then a = (ab−1)b /∈ (ab−1)U .

If U ∈ Λ+, then U − U = U , so + is continuous, as is multiplication

by a scalar. For multiplication we need to work.

Step 1. Choose V1 ∈ Λ+ such that c−rk(K/V1) = r = c−rk(Λ).

If r = 1, any element of Λ+ which is 6= K will do. Assume r > 1, and

consider a strict r-cube in Λ+; find B1, . . . , Br in this r-cube which

are independent over the base A =
⋂
Bi and note that A 6= {0} by

goldenness.
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Step 2. If ai ∈ Bi \A, then S = {a1, . . . , ar} has the following property:

whenever B ∈ Λ contains S, then B contains A. (Lemma 5.7: show

that the (A + C) ∩ Bi form a strict r-cube containing A, then that

c−rk(A/A ∩ C) = 0).

Step 3. If we set V2 =
⋂
a−1
i U and V = V1 ∩ V2, then V · V ⊆ U .

Indeed, if a, b ∈ V , then ai ∈ a−1U and therefore S ⊆ a−1U ∈ Λ,

whence V1 ⊆ a−1U , and b ∈ a−1U , i.e., ab ∈ U .

Locally bounded?

Let U = V1 and S = {a1, . . . , ar} be as in claim 1. If V ∈ Λ+, and

0 6= c ∈
⋂
a−1
i V , then cS ⊆ V , whence cU ⊆ V .
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Wr?

Again let U ∈ Λ+ be such that c−rk(K/U) = r, 1 ∈ U . We know

that U is a bounded neighbourhood of 0. If a1, . . . , ar+1 ∈ U , then∑
i aiU =

∑
i 6=j aiU for some j, and therefore aj ∈ ajU ⊆

∑
i 6=j aiU .

Remark: this characterizes bounded sets as those A ∈ Λ+ with

c−rk(K/A) = r.

All results of §6 use the notion of infinitesimals, which we didn’t do

in detail. They appear in dpII section 3.
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Lemma 7.1. Let τ, τ ′ be two ring topologies on the field K, with

τ ′ ⊆ τ . If τ is a Wn-topology, so is τ ′.

Proof. The proof is surprisingly long. The difficulty lies in showing

that τ ′ is locally bounded. Given that there are local sentences ex-

pressing that τ is Wn, τ ⊆ τ ′, and τ ′ is not Wn, we may assume that

(K, τ, τ ′) is ω-complete, whence τ is induced by a Wn-subring R.
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Claim 1. R is τ ′-bounded.

If U ∈ τ ′ ⊆ τ , then for some c ∈ K×, cR ⊆ U .

Claim 2. if U ∈ τ ′, there is M ∈ τ ′, M ⊂ U , such that M is an R-

submodule of K.

Choose a descending chain (Ui) of elements of τ ′, with U0 = U ,

satisfying

Un+1 ∪ (Un+1 − Un+1) ∪ Un+1R ⊂ Un.

This is possible because R is τ ′-bounded, and τ ′ is a ring topology.

Then M =
⋂
Un belongs to τ ′, and is an R-submodule of K.
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Claim 1. R is τ ′-bounded.

Claim 2. if U ∈ τ ′, there is M ∈ τ ′, M ⊂ U , such that M is an R-

submodule of K.

We now consider the set Λ+ of all R-submodules of K which are in τ ′,
and define Λ = Λ+∪{0}. Then Λ is a golden lattice, and by Thm 5.9,

Λ+ defines a Wn-topology τ ′′ on K, and we have τ ′′ = τ ′ by Claim 2.
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Lemma 7.3. Let R ⊆ R′ be two subrings of K = Frac(R). If R

is a Wn-ring, then either R′ is a Wn−1-ring, or R and R′ are co-

embeddable.

Proof. We know that the cube rank c−rkR′(K) ≤ c−rkR(K). So,

assume both ranks are equal to n; we need to show that R′ is em-

beddable in R. We look at the lattices Λ and Λ′ of R-, resp. R′-
submodules of K; they are golden lattices, with Λ′ ⊆ Λ. Take A ∈ Λ′

such that A is the base of a strict n-cube in Λ′; then this is also

a strict n-cube in Λ, and therefore c−rkR(K/A) = c−rkR′(K/A) =

c−rkR(K) = c−rkR′(K). By the remark after 5.10, A is bounded in

both topologies.
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Corollary 7.4. If τ is a Wn-topology on a field K, and τ ′ is a strict

coarsening of τ , then τ ′ is a Wn−1-topology.
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Independence and approximation

Definition 1.6. Let τ , τ ′ be two ring topologies on K, Then τ and τ ′

are independent iff every non-empty τ-open set intersects non-trivially

every non-empty τ ′-open set.

Remarks: This is a local sentence. It can also be expressed by:

∀U ∈ τ, ∀V ∈ τ ′, U + V = K.
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Lemma 7.15. Let R be a Wn-ring on K, and Ri, i = 1,2, subrings

of K containing R. Then either there is a V -topology coarser than

both τR1
and τR2

, or τR1
and τR2

are independent.

Proof. Let Λ+ be the set of R-submodules M of K which are neigh-

bourhoods of 0 in both τR1
and τR2

; if Λ+ 6= {K}, then Λ = Λ+ ∪ {0}
is a golden lattice, of rank ≤ n. Assume that τR1

and τR2
are not

independent, and take non-zero ideals I1 ≤ R1 and I2 ≤ R2 such that

I1 + I2 < K. Then I1 + I2 ∈ Λ, so that Λ is golden. Then Λ+ defines

a Wn-topology τ ′ on K, which is a common coarsening of τR1
and

τR2
; and we apply 4.10: there is a V -topology which is coarser than

τ ′, hence than τR1
and τR2

.
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Corollary 7.16. Let τ0, τ1, τ2 be W-topologies on K, with τ0 finer

than τ1 and τ2. Then either τ1 and τ2 are independent, or they share

a common V-topological coarsening.

Proof. We may pass to a saturated extension, in which all topologies

τi are coming from rings Ri, and we have R0 ⊆ R1, R2. Now apply the

previous result.
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