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Definition 1.1. Let R be a domain, K = Frac(R), ne N, S C K.

(1) Then S is a Wy-set iff whenever ag,...,an € K, then for some i,
ai € 2 jzi @55

(2) R is a Wy-ring iff it is a W,,-set as above; it suffices to check the
condition for aq,...,an € R. Equivalently, if c—rkr(R) = c—rkp(K) <
n.

Definition 1.2. A V-topology is a locally bounded field topology such
that for any B C K*, B~1 is bounded iff K\ B € .

Kowalski-Durbaum: comes from an archimedean absolute value, or
from a non-trivial valuation.



1.3. Fact from [PZ]. Let 7 be an w-complete topology on the field K .
If T is locally bounded/locally bounded field/V-topology, then = Tp
for some subring R with Frac(R) = K/and R is local/a valuation
ring.

Proposition 3.1 Let R be an integral domain, K = Frac(R) # R.
Then T, with neighbourhood basis {cR | c € K*} is a Hausdorff non-
discrete, locally bounded ring topology on K. Moreover, if R is a
Wn-ring, then tr is a field topology.

Note that if d € R, then dcR C cR. The first assertions follow easily.



We know that J(R) # 0 (because R/J(R) is the direct product of at
most n fields), and R #= K. We need to show that if I is an ideal of
R there is a non-zero ideal I’ of R such that

1+1N"1tci1+41.

Let I’ = INnJ(R); then I’ = 0 and one checks that if x € I’, then
14+2€RX whence —z(14+2z)teland (14+2)lel1+1.



Definition 1.4. A W,-topology on a field K is a Hausdorff non-
discrete locally bounded ring topology on K such that for every neigh-
bourhood U of O there is ¢ € K* such that cU is a Wj,-set. This is a

local property.

Proposition 3.6. Let R be a non-trivial Wy,-ring with fraction field
K. Then the induced field topology is a Wy-topology.

Proof. The bounded neighbourhood R is a W,-set.



Lemma 3.7. Let K be a field with a W, -topology. Suppose that K is
w-complete. Then the topology is induced by a Wy,-ring R. Moreover,
given any bounded set S, we may assume that S C R.

Proof. Let U be a bounded neighbourhood of 0; for some ¢ € K*,
cU is a Wp-set. Let R be the subring of K generated by SucU. It
IS an increasing union of countably many bounded sets, hence by w-
completeness, it is bounded. So R is a bounded W,-set which induces

the topology.



Corollary 3.8 Let K be a field with a ring topology .

(1) 7 is a Wyp-topology iff (K, T) is locally equivalent to a field with a
topology induced by a Wy-ring R.

(2) If 7 is a Wy, -topology, then T is a field topology.

(3) A Wy-topology is a Wy,-topology for m > n.

(4) T is a Wq-topology iff T is a V-topology.



Proposition 4.1 Let 7 be a Wy-topology on K (a highly saturated
field). Suppose there is a bounded neighbourhood U C K of 0, which
is V-definable or N-definable, and is an additive subgroup of K.

Then U is co-embeddable with a definable set, and T is a definable
topology.

Proof. Co-embeddable: A and B are co-embeddable iff there are
c,d € K* such that cA C B C dA.

We may assume that U is a Wp-set. Let m be minimal such that U
is Wi, and let by,...,bm € K such that for all 4, b; & >~ ;+;b;U.
Because U is a subgroup of K, so are each of the finite sums above,
and therefore they are open and closed for the topology.

Let S be the set of x € K such that for some ¢, b; € U + >+, b;U. If
U is Vv-definable, so is S, and K\ S is A-definable. By definition and
because U is a Wyy-set, if x ¢ S, then z € >, b;U.



Claim There is V € 7 such that VNS = 0.

We know that for every i, b; is not in the closed set > ,+;b;U; hence
there is some small V € 7 such that (b; +V - U) N ¥ ,x;b,U = 0.
Take such a V which works for all b;. If x € V NS, then for some 1,
b; € xU 4 >_j+;b;U, and

(Z)#—(bi—l—xU)ﬂijUg (bz-—l—V-U)ﬂijUz(Z).
JF JF
We then get V C K\ S C >;bU. Now, > ,;bU is bounded, whence
K\ S € rnrt, ie., it is co-embeddable with U. One of {UK\ S}
is V-definable, the other is A-definable. This implies that U is co-
embeddable with a definable D: say U is Vv-definable; wma U C K\ S;
by compactness there is a definable D with U C D C K\ S.



Corollary. (Prop 4.6). Let R be a non-trivial vV-definable Wy-ring on
K. Then R is co-embeddable with a definable set D, and the topology
is definable.

If R is a Vv-definable W,-ring on K, this applies in particular to:
The integral closure R of R:

If P is a maximal ideal of R, the localization Ryy.

(They are W, because they contain R).



Theorem 4.10. Let (K,7) be a field with a W, -topology.
(1) There is at least one V-topological coarsening of .
(2) There are at most n such coarsenings.

(3) If (K, 1) is a definable topology (wrt to some structure on K),
then every V-topological coarsening of t is definable.
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Theorem 4.10. Let (K,7) be a field with a W, -topology.
(1) There is at least one V-topological coarsening of .

Proof. (1) Let D C K be a bounded neighbourhood of 0 which is
a Wp-set, let (K*, D*) be a highly saturated elementary extension of
(K,D). Then D* defines a Wy-topology on K* which is w-complete.
If R is the subring of K* generated by D*, then R is Vv-definable and
bounded: sor R and D* define the same topology on K*. Let R be the
integral closure of R, P a maximal ideal of R; so the localization Rp
iIs V-definable, a valuation ring, and it therefore induces a V-topology
on K™, which is coarser than the one induced by D*. This topology
is definable (by 4.1). Hence, the same is true of (K,D): it has a
definable V-topology which is coarser than the topology defined by
D.
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Theorem 4.10. Let (K,7) be a field with a W, -topology.
(1) There is at least one V-topological coarsening of .
(2) There are at most n such coarsenings.

(2) Let 0q,...,0m be distinct V-topological coarsenings of 7; we want
m < n.

Via an ultraproduct construction, we may assume that the topologies
o1,...,0m are w-complete. We know that 7 is induced by a subring
R, of weight < n, and that R is bounded with respect to the ¢;. By
Lemma 3.7, there is a valuation ring O; containing R and inducing
o;; since the topologies are pairwise distinct, the O; must be incom-
parable, and therefore m < n.
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Theorem 4.10. Let (K,7) be a field with a W, -topology.

(1) There is at least one V-topological coarsening of .

(2) There are at most n such coarsenings.

(3) If (K,7) is a definable topology (wrt to some structure on K),
then every V-topological coarsening of r is definable.

(3) Let o be a V-topological coarsening of . Let D and B be bounded
neighbourhoods of O for = and o respectively, with D definable. Wma
D is a Wp-set, B is a Wi-set. Since o C 7, D is also o-bounded. Re-
placing B by BUD, wma D C B. Consider an ultrapower (K*, D*, B*),
Rp and Rp the associated subrings generated by D* and B*. Then
Rp is a Wy-subring of K*, v-definable in (K*, D*), and co-embeddable
with D*;

Rp is a Wi-subring of K*, v-definable in (K*, B*), co-embedddable
with B*.
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Rp D Rp. As Rp is a valuation ring, it contains Rp; But Rp is an in-
tersection of valuation rings O1,...,0On, hence Rg must contain some
O;.

So O, is Vv-definable in (K*, D*). By Prop. 4.6, there is a definable
C C K* which is co-embeddable with O;. Note that Rg D O; implies
they induce the same topology, and therefore C, O;, Rg, B* are pairwise
co-embeddable.

Therefore there is a set Cpy definable in (K, D) which is co-embeddable
with B (work in the structure (K, D, B)). So, o is definable in (K, D).
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Proposition 4.11. Let (K, 7,...) be a sufficiently saturated field, and
T a definable Wy-topology on K. Then t is induced by a V-definable,
externally definable W,,-ring R on K.

Proof. Let D be a definable bounded neighbourhood of O which is
a Wp-set. Wma the language is countable, and we let K < K, K
countable, over which D is definable. Let R be the union of all K-
definable bounded sets. Then R is a Vv-definable ring, which contains
D, so is a Wp-ring, and is bounded. So R induces the topology
(bounded neighbourhood).
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Claim. If S¢,...,S, are K-definable bounded subsets of K, then there
is ce K* such that JS; C ¢D.

There is such a c € K*, because |JS; is bounded. But since everything
is K-definable, such a ¢ exists in K.

So, R = U.cgxcD, a directed union. So R is externally definable: if
o(y) defines D, consider the following partial type over K:
>(z) = {Vye(cty) = oz ty) | ce K} U

{Fye(c € y) A—p(zty) | cD ¢ R}.
If ¢* realises X in some K < K*, then c*p(K*) "K = R.
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Definition 1.5. Let K be a field. A golden lattice on K is a col-
lection A of additive subgroups of K, which contains {0} and K but
also other elements, is closed under (finite) intersection, sum and
scalar multiplication, has finite cube rank, and the set AT = A\ {0}
IS closed under intersection.

Theorem 5.9. If A is a golden lattice on K, then AT is a neigh-
bourhood basis of a W-topology on K. If N has rank r, this is a
Wy-topology.
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Proof. We check the relevant axioms, U,V,W will range over AT.
First, AT is a filter base, and is non-discrete. Let U &€ A with
O<U<K;ifO0#a€eK,and be K\U, then a = (ab=1)b ¢ (ab~1)U.
If U e /\+, then U — U = U, so + is continuous, as is multiplication
by a scalar. For multiplication we need to work.

Step 1. Choose V; € AT such that c—rk(K/Vy) = r = c—rk(A).

If r =1, any element of AT which is # K will do. Assume r > 1, and
consider a strict r-cube in AT; find B1,...,By In this r-cube which
are independent over the base A = N B; and note that A # {0} by
goldenness.
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Step 2. If a; € B;\ A, then S = {a1,...,ar} has the following property:
whenever B € A contains S, then B contains A. (Lemma 5.7: show
that the (A + C) N B; form a strict »-cube containing A, then that
c—rk(A/ANC) =0).

Step 3. If we set Vo = Na; U and V = Vy; NV, then V-V C U.
Indeed, if a,b € V, then a; € a~1U and therefore S C o~ 1U € A,
whence V4 Ca~1U, and be a™1U, ie., abe U.

Locally bounded?
Let U = V; and S = {aq,...,ar} be as in claim 1. If V € AT, and
0# c€Na; 'V, then ¢S CV, whence cU C V.
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W,?

Again let U € AT be such that c—rk(K/U) = r, 1 € U. We know
that U is a bounded neighbourhood of 0. If aj,...,a,41 € U, then
>oiaU =% +;a;U for some j, and therefore a; € a;U C 32,5 a;U.

Remark: this characterizes bounded sets as those A € At with
c—rk(K/A) =r.

All results of §6 use the notion of infinitesimals, which we didn’'t do
in detail. They appear in dpll section 3.
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Lemma 7.1. Let 7,7 be two ring topologies on the field K, with
' Cr. If 7 is a W,-topology, so is 1’.

Proof. The proof is surprisingly long. The difficulty lies in showing
that 7/ is locally bounded. Given that there are local sentences ex-
pressing that 7 is W, = C 7/, and 7’ is not W,,, we may assume that
(K,T,7") is w-complete, whence 7 is induced by a W,-subring R.
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Claim 1. R is 7-bounded.
If U € 7' C 7, then for some ce KX, cRCU.

Claim 2. if U € 7/, there is M € 7/, M C U, such that M is an R-
submodule of K.

Choose a descending chain (U;) of elements of 7/, with Uy = U,
satisfying

Up+41 U (Un—I—l — Un—l—l) UUp4+1R C Up.

This is possible because R is 7-bounded, and 7’ is a ring topology.
Then M =N U, belongs to 7/, and is an R-submodule of K.
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Claim 1. R is 7-bounded.
Claim 2. if U € 7/, thereis M € v/, M C U, such that M is an R-

submodule of K.

We now consider the set AT of all R-submodules of K which are in 7!
and define A = ATU{0}. Then A is a golden lattice, and by Thm 5.9,
AT defines a W,,-topology 7’ on K, and we have 7/ = +/ by Claim 2.
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Lemma 7.3. Let R C R’ be two subrings of K = Frac(R). If R
is a Wy-ring, then either R' is a W,,_1-ring, or R and R' are co-
embeddable.

Proof. We know that the cube rank c—rkp/(K) < c—rkr(K). So,
assume both ranks are equal to n; we need to show that R’ is em-
beddable in R. We look at the lattices A and A’ of R-, resp. R'-
submodules of K; they are golden lattices, with A" C A. Take A € N
such that A is the base of a strict n-cube in A’; then this is also
a strict n-cube in A, and therefore c—rkr(K/A) = c—rkp(K/A) =
C—rkp(K) = c—rkp/(K). By the remark after 5.10, A is bounded in
both topologies.
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Corollary 7.4. If r is a W,-topology on a field K, and 7' is a strict
coarsening of r, then v’ is a W,,_1-topology.
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Independence and approximation

Definition 1.6. Let 7, 7/ be two ring topologies on K, Then 7 and 7/

are independent iff every non-empty m-open set intersects non-trivially
every non-empty 7’-open set.

Remarks: This is a local sentence. It can also be expressed by:
YvUer,VWer U4+V =K.
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Lemma 7.15. Let R be a Wy,-ring on K, and R;, 1 = 1,2, subrings
of K containing R. Then either there is a V-topology coarser than
both tgr, and tg,, Or T, and Tr, are independent.

Proof. Let AT be the set of R-submodules M of K which are neigh-
bourhoods of 0 in both 7, and 7g,; if AT #= {K}, then A = AT U{0}
is a golden lattice, of rank < n. Assume that tr, and 7g, are not
independent, and take non-zero ideals I7 < Rq and I» < R, such that
Ii +I> < K. Then I; + 1> € A, so that A is golden. Then AT defines
a Wy-topology 7/ on K, which is a common coarsening of TR, and
TRo: and we apply 4.10: there is a V-topology which is coarser than
7/, hence than 7p, and 7p,.
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Corollary 7.16. Let 1q,71,7 be W-topologies on K, with o finer
than 1 and 1. Then either 71 and 1 are independent, or they share
a common V-topological coarsening.

Proof. We may pass to a saturated extension, in which all topologies
T; are coming from rings R;, and we have Rg C R1, Ro. Now apply the
previous result.
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