Dp-finite fields V, after W. Johnson

Zoé Chatzidakis

22 and 29 October 2020 MSRI - Working group **Definition 1.1.** Let R be a domain, K = Frac(R), $n \in \mathbb{N}$, $S \subset K$. (1) Then S is a W_n -set iff whenever $a_0, \ldots, a_n \in K$, then for some i, $a_i \in \sum_{j \neq i} a_j S$. (2) R is a W_n -ring iff it is a W_n -set as above; it suffices to check the condition for $a_0, \ldots, a_n \in R$. Equivalently, if $c - rk_R(R) = c - rk_R(K) \leq n$.

Definition 1.2. A *V*-topology is a locally bounded field topology such that for any $B \subseteq K^{\times}$, B^{-1} is bounded iff $K \setminus B \in \tau$.

Kowalski-Dürbaum: comes from an archimedean absolute value, or from a non-trivial valuation.

1.3. Fact from [PZ]. Let τ be an ω -complete topology on the field K. If τ is locally bounded/locally bounded field/V-topology, then $\tau = \tau_R$ for some subring R with Frac(R) = K/and R is local/a valuation ring.

Proposition 3.1 Let R be an integral domain, $K = Frac(R) \neq R$. Then τ_R , with neighbourhood basis $\{cR \mid c \in K^{\times}\}$ is a Hausdorff nondiscrete, locally bounded ring topology on K. Moreover, if R is a W_n -ring, then τ_R is a field topology.

Note that if $d \in R$, then $dcR \subset cR$. The first assertions follow easily.

We know that $J(R) \neq 0$ (because R/J(R) is the direct product of at most n fields), and $R \neq K$. We need to show that if I is an ideal of R there is a non-zero ideal I' of R such that

$$(1+I')^{-1} \subseteq 1+I.$$

Let $I' = I \cap J(R)$; then $I' \neq 0$ and one checks that if $x \in I'$, then $1 + x \in R^{\times}$, whence $-x(1+x)^{-1} \in I$ and $(1+x)^{-1} \in 1 + I$.

Definition 1.4. A W_n -topology on a field K is a Hausdorff nondiscrete locally bounded ring topology on K such that for every neighbourhood U of 0 there is $c \in K^{\times}$ such that cU is a W_n -set. This is a local property.

Proposition 3.6. Let R be a non-trivial W_n -ring with fraction field K. Then the induced field topology is a W_n -topology.

Proof. The bounded neighbourhood R is a W_n -set.

Lemma 3.7. Let K be a field with a W_n -topology. Suppose that K is ω -complete. Then the topology is induced by a W_n -ring R. Moreover, given any bounded set S, we may assume that $S \subseteq R$.

Proof. Let U be a bounded neighbourhood of 0; for some $c \in K^{\times}$, cU is a W_n -set. Let R be the subring of K generated by $S \cup cU$. It is an increasing union of countably many bounded sets, hence by ω -completeness, it is bounded. So R is a bounded W_n -set which induces the topology.

Corollary 3.8 Let K be a field with a ring topology τ .

(1) τ is a W_n -topology iff (K, τ) is locally equivalent to a field with a topology induced by a W_n -ring R.

(2) If τ is a W_n -topology, then τ is a field topology.

(3) A W_n -topology is a W_m -topology for m > n.

(4) τ is a W_1 -topology iff τ is a V-topology.

Proposition 4.1 Let τ be a W_n -topology on \mathbb{K} (a highly saturated field). Suppose there is a bounded neighbourhood $U \subseteq \mathbb{K}$ of 0, which is \lor -definable or \land -definable, and is an additive subgroup of \mathbb{K} . Then U is co-embeddable with a definable set, and τ is a definable topology.

Proof. Co-embeddable: A and B are co-embeddable iff there are $c, d \in \mathbb{K}^{\times}$ such that $cA \subseteq B \subseteq dA$. We may assume that U is a W_n -set. Let m be minimal such that U is W_m , and let $b_1, \ldots, b_m \in \mathbb{K}$ such that for all $i, b_i \notin \sum_{j \neq i} b_j U$.

Because U is a subgroup of \mathbb{K} , so are each of the finite sums above, and therefore they are open and closed for the topology.

Let S be the set of $x \in \mathbb{K}$ such that for some $i, b_i \in xU + \sum_{j \neq i} b_j U$. If U is \vee -definable, so is S, and $\mathbb{K} \setminus S$ is \wedge -definable. By definition and because U is a W_m -set, if $x \notin S$, then $x \in \sum_i b_i U$.

Claim There is $V \in \tau$ such that $V \cap S = \emptyset$.

We know that for every *i*, b_i is not in the closed set $\sum_{j \neq i} b_j U$; hence there is some small $V \in \tau$ such that $(b_i + V \cdot U) \cap \sum_{j \neq i} b_j U = \emptyset$. Take such a V which works for all b_i . If $x \in V \cap S$, then for some *i*, $b_i \in xU + \sum_{j \neq i} b_j U$, and

$$\emptyset \neq (b_i + xU) \cap \sum_{j \neq i} b_j U \subseteq (b_i + V \cdot U) \cap \sum_{j \neq i} b_j U = \emptyset.$$

We then get $V \subseteq \mathbb{K} \setminus S \subseteq \sum_i b_i U$. Now, $\sum_i b_i U$ is bounded, whence $\mathbb{K} \setminus S \in \tau \cap \tau^{\perp}$, i.e., it is co-embeddable with U. One of $\{U, \mathbb{K} \setminus S\}$ is \vee -definable, the other is \wedge -definable. This implies that U is co-embeddable with a definable D: say U is \vee -definable; wma $U \subseteq \mathbb{K} \setminus S$; by compactness there is a definable D with $U \subseteq D \subseteq \mathbb{K} \setminus S$.

Corollary. (Prop 4.6). Let R be a non-trivial \lor -definable W_n -ring on \mathbb{K} . Then R is co-embeddable with a definable set D, and the topology is definable.

If R is a \lor -definable W_n -ring on \mathbb{K} , this applies in particular to: The integral closure \tilde{R} of R; If \mathfrak{P} is a maximal ideal of R, the localization $R_{\mathfrak{P}}$. (They are W_n because they contain R). **Theorem 4.10**. Let (K, τ) be a field with a W_n -topology. (1) There is at least one V-topological coarsening of τ . (2) There are at most n such coarsenings. (3) If (K, τ) is a definable topology (wrt to some structure on K), then every V-topological coarsening of τ is definable. **Theorem 4.10**. Let (K, τ) be a field with a W_n -topology. (1) There is at least one V-topological coarsening of τ .

Proof. (1) Let $D \subseteq K$ be a bounded neighbourhood of 0 which is a W_n -set, let (K^*, D^*) be a highly saturated elementary extension of (K, D). Then D^* defines a W_n -topology on K^* which is ω -complete. If R is the subring of K^* generated by D^* , then R is \vee -definable and bounded; sor R and D^* define the same topology on K^* . Let \tilde{R} be the integral closure of R, P a maximal ideal of \tilde{R} ; so the localization \tilde{R}_P is \vee -definable, a valuation ring, and it therefore induces a V-topology on K^* , which is coarser than the one induced by D^* . This topology is definable (by 4.1). Hence, the same is true of (K, D): it has a definable V-topology which is coarser than the topology defined by D. **Theorem 4.10**. Let (K, τ) be a field with a W_n -topology. (1) There is at least one V-topological coarsening of τ . (2) There are at most n such coarsenings.

(2) Let $\sigma_1, \ldots, \sigma_m$ be distinct V-topological coarsenings of τ ; we want $m \leq n$.

Via an ultraproduct construction, we may assume that the topologies $\sigma_1, \ldots, \sigma_m$ are ω -complete. We know that τ is induced by a subring R, of weight $\leq n$, and that R is bounded with respect to the σ_i . By Lemma 3.7, there is a valuation ring \mathcal{O}_i containing R and inducing σ_i ; since the topologies are pairwise distinct, the \mathcal{O}_i must be incomparable, and therefore $m \leq n$.

Theorem 4.10. Let (K, τ) be a field with a W_n -topology. (1) There is at least one V-topological coarsening of τ . (2) There are at most n such coarsenings. (3) If (K, τ) is a definable topology (wrt to some structure on K), then every V-topological coarsening of τ is definable.

(3) Let σ be a V-topological coarsening of τ . Let D and B be bounded neighbourhoods of 0 for τ and σ respectively, with D definable. Wma D is a W_n -set, B is a W_1 -set. Since $\sigma \subset \tau$, D is also σ -bounded. Replacing B by $B \cup D$, wma $D \subseteq B$. Consider an ultrapower (K^*, D^*, B^*) , R_D and R_B the associated subrings generated by D^* and B^* . Then R_D is a W_n -subring of K^* , \lor -definable in (K^*, D^*) , and co-embeddable with D^* ;

 R_B is a W_1 -subring of K^* , \vee -definable in (K^*, B^*) , co-embedddable with B^* .

 $R_B \supseteq R_D$. As R_B is a valuation ring, it contains \tilde{R}_D ; But \tilde{R}_D is an intersection of valuation rings $\mathcal{O}_1, \ldots, \mathcal{O}_n$, hence R_B must contain some \mathcal{O}_i .

So \mathcal{O}_i is \lor -definable in (K^*, D^*) . By Prop. 4.6, there is a definable $C \subset K^*$ which is co-embeddable with \mathcal{O}_i . Note that $R_B \supset \mathcal{O}_i$ implies they induce the same topology, and therefore $C, \mathcal{O}_i, R_B, B^*$ are pairwise co-embeddable.

Therefore there is a set C_0 definable in (K, D) which is co-embeddable with B (work in the structure (K, D, B)). So, σ is definable in (K, D).

Proposition 4.11. Let $(\mathbb{K}, \tau, ...)$ be a sufficiently saturated field, and τ a definable W_n -topology on \mathbb{K} . Then τ is induced by a \lor -definable, externally definable W_n -ring R on \mathbb{K} .

Proof. Let D be a definable bounded neighbourhood of 0 which is a W_n -set. Wma the language is countable, and we let $K \prec \mathbb{K}$, Kcountable, over which D is definable. Let R be the union of all Kdefinable bounded sets. Then R is a \lor -definable ring, which contains D, so is a W_n -ring, and is bounded. So R induces the topology (bounded neighbourhood). **Claim**. If S_1, \ldots, S_r are *K*-definable bounded subsets of \mathbb{K} , then there is $c \in K^{\times}$ such that $\bigcup S_i \subseteq cD$. There is such a $c \in \mathbb{K}^{\times}$, because $\bigcup S_i$ is bounded. But since everything

is K-definable, such a c exists in K.

So, $R = \bigcup_{c \in K^{\times}} cD$, a directed union. So R is externally definable: if $\varphi(y)$ defines D, consider the following partial type over \mathbb{K} : $\Sigma(x) = \{ \forall y \, \varphi(c^{-1}y) \rightarrow \varphi(x^{-1}y) \mid c \in K \} \cup \{ \exists y \, \varphi(c \in y) \land \neg \varphi(x^{-1}y) \mid cD \notin R \}.$

If c^* realises Σ in some $\mathbb{K} \prec \mathbb{K}^*$, then $c^* \varphi(\mathbb{K}^*) \cap \mathbb{K} = R$.

Definition 1.5. Let *K* be a field. A golden lattice on *K* is a collection Λ of additive subgroups of *K*, which contains {0} and *K* but also other elements, is closed under (finite) intersection, sum and scalar multiplication, has finite cube rank, and the set $\Lambda^+ = \Lambda \setminus \{0\}$ is closed under intersection.

Theorem 5.9. If Λ is a golden lattice on K, then Λ^+ is a neighbourhood basis of a W-topology on K. If Λ has rank r, this is a W_r -topology.

Proof. We check the relevant axioms, U, V, W will range over Λ^+ . First, Λ^+ is a filter base, and is non-discrete. Let $U \in \Lambda$ with 0 < U < K; if $0 \neq a \in K$, and $b \in K \setminus U$, then $a = (ab^{-1})b \notin (ab^{-1})U$. If $U \in \Lambda^+$, then U - U = U, so + is continuous, as is multiplication by a scalar. For multiplication we need to work.

Step 1. Choose $V_1 \in \Lambda^+$ such that $c-rk(K/V_1) = r = c-rk(\Lambda)$. If r = 1, any element of Λ^+ which is $\neq K$ will do. Assume r > 1, and consider a strict r-cube in Λ^+ ; find B_1, \ldots, B_r in this r-cube which are independent over the base $A = \bigcap B_i$ and note that $A \neq \{0\}$ by goldenness. Step 2. If $a_i \in B_i \setminus A$, then $S = \{a_1, \ldots, a_r\}$ has the following property: whenever $B \in \Lambda$ contains S, then B contains A. (Lemma 5.7: show that the $(A + C) \cap B_i$ form a strict r-cube containing A, then that $c-rk(A/A \cap C) = 0$).

Step 3. If we set $V_2 = \bigcap a_i^{-1}U$ and $V = V_1 \cap V_2$, then $V \cdot V \subseteq U$. Indeed, if $a, b \in V$, then $a_i \in a^{-1}U$ and therefore $S \subseteq a^{-1}U \in \Lambda$, whence $V_1 \subseteq a^{-1}U$, and $b \in a^{-1}U$, i.e., $ab \in U$.

Locally bounded?

Let $U = V_1$ and $S = \{a_1, \ldots, a_r\}$ be as in claim 1. If $V \in \Lambda^+$, and $0 \neq c \in \bigcap a_i^{-1}V$, then $cS \subseteq V$, whence $cU \subseteq V$.

 W_r ? Again let $U \in \Lambda^+$ be such that c-rk(K/U) = r, $1 \in U$. We know that U is a bounded neighbourhood of 0. If $a_1, \ldots, a_{r+1} \in U$, then $\sum_i a_i U = \sum_{i \neq j} a_i U$ for some j, and therefore $a_j \in a_j U \subseteq \sum_{i \neq j} a_i U$.

Remark: this characterizes bounded sets as those $A \in \Lambda^+$ with c-rk(K/A) = r.

All results of $\S6$ use the notion of infinitesimals, which we didn't do in detail. They appear in dpII section 3.

Lemma 7.1. Let τ, τ' be two ring topologies on the field K, with $\tau' \subseteq \tau$. If τ is a W_n -topology, so is τ' .

Proof. The proof is surprisingly long. The difficulty lies in showing that τ' is locally bounded. Given that there are local sentences expressing that τ is W_n , $\tau \subseteq \tau'$, and τ' is not W_n , we may assume that (K, τ, τ') is ω -complete, whence τ is induced by a W_n -subring R.

Claim 1. R is τ' -bounded. If $U \in \tau' \subseteq \tau$, then for some $c \in K^{\times}$, $cR \subseteq U$.

Claim 2. if $U \in \tau'$, there is $M \in \tau'$, $M \subset U$, such that M is an R-submodule of K.

Choose a descending chain (U_i) of elements of τ' , with $U_0 = U$, satisfying

$$U_{n+1} \cup (U_{n+1} - U_{n+1}) \cup U_{n+1}R \subset U_n.$$

This is possible because R is τ' -bounded, and τ' is a ring topology. Then $M = \bigcap U_n$ belongs to τ' , and is an R-submodule of K. Claim 1. R is τ' -bounded. Claim 2. if $U \in \tau'$, there is $M \in \tau'$, $M \subset U$, such that M is an R-submodule of K.

We now consider the set Λ^+ of all *R*-submodules of *K* which are in τ' , and define $\Lambda = \Lambda^+ \cup \{0\}$. Then Λ is a golden lattice, and by Thm 5.9, Λ^+ defines a W_n -topology τ'' on *K*, and we have $\tau'' = \tau'$ by Claim 2. **Lemma 7.3**. Let $R \subseteq R'$ be two subrings of K = Frac(R). If R is a W_n -ring, then either R' is a W_{n-1} -ring, or R and R' are co-embeddable.

Proof. We know that the cube rank $c-rk_{R'}(K) \leq c-rk_R(K)$. So, assume both ranks are equal to n; we need to show that R' is embeddable in R. We look at the lattices Λ and Λ' of R-, resp. R'-submodules of K; they are golden lattices, with $\Lambda' \subseteq \Lambda$. Take $A \in \Lambda'$ such that A is the base of a strict n-cube in Λ' ; then this is also a strict n-cube in Λ , and therefore $c-rk_R(K/A) = c-rk_{R'}(K/A) = c-rk_{R'}(K)$. By the remark after 5.10, A is bounded in both topologies.

Corollary 7.4. If τ is a W_n -topology on a field K, and τ' is a strict coarsening of τ , then τ' is a W_{n-1} -topology.

Independence and approximation

Definition 1.6. Let τ , τ' be two ring topologies on K, Then τ and τ' are *independent* iff every non-empty τ -open set intersects non-trivially every non-empty τ' -open set.

Remarks: This is a local sentence. It can also be expressed by: $\forall U \in \tau, \forall V \in \tau', U + V = K.$

Lemma 7.15. Let R be a W_n -ring on K, and R_i , i = 1, 2, subrings of K containing R. Then either there is a V-topology coarser than both τ_{R_1} and τ_{R_2} , or τ_{R_1} and τ_{R_2} are independent.

Proof. Let Λ^+ be the set of R-submodules M of K which are neighbourhoods of 0 in both τ_{R_1} and τ_{R_2} ; if $\Lambda^+ \neq \{K\}$, then $\Lambda = \Lambda^+ \cup \{0\}$ is a golden lattice, of rank $\leq n$. Assume that τ_{R_1} and τ_{R_2} are not independent, and take non-zero ideals $I_1 \leq R_1$ and $I_2 \leq R_2$ such that $I_1 + I_2 < K$. Then $I_1 + I_2 \in \Lambda$, so that Λ is golden. Then Λ^+ defines a W_n -topology τ' on K, which is a common coarsening of τ_{R_1} and τ_{R_2} ; and we apply 4.10: there is a V-topology which is coarser than τ' , hence than τ_{R_1} and τ_{R_2} .

Corollary 7.16. Let τ_0, τ_1, τ_2 be W-topologies on K, with τ_0 finer than τ_1 and τ_2 . Then either τ_1 and τ_2 are independent, or they share a common V-topological coarsening.

Proof. We may pass to a saturated extension, in which all topologies τ_i are coming from rings R_i , and we have $R_0 \subseteq R_1, R_2$. Now apply the previous result.