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Goal

Theorem (4.3)
Let τ be a local W -topology on a field K, then τ has a unique
V -topological coarsening.
Equivalently, in an ultrapower K ∗, the integral closure R̃ of Rτ is a
valuation ring.



Multi-approximation
We work over a fixed infinite field K0. We assume all valuations
are trivial when restricted to K0.

Lemma (3.1)
Let v1, . . . , vm be valuations on a field K. For any z ,w ∈ K, there
is c ∈ K0 such that vi (z − cw) = min(vi (z), vi (w)) for all i .

Proof.
Taking c ∈ K0 such that c 6= resi ( z

w ) works.
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Scrambling

Definition
x = (x1, . . . , xn) is scrambled if vi (xj) = vi (xk) for all i 6 m and
j , k 6 n.

µ ∈ GLn(K ) scrambles x if µ · x is scrambled.

Lemma (3.2)
Let v1, · · · , vm be valuations on K. Any n-tuple x can be
scrambled by some µ ∈ GLn(K0).

Proof.
Whenever vi (xj) > vi (xk), we find c ∈ K0 such that
vi ′(xj − cxk) = min(vi ′(xj), vi ′(xk)) for all i ′, and we replace xj by
xj − cxk . Iterating this process gives a scrambled vector in finitely
many steps.

Corollary (3.3)
For every n,m there is a finite Gn,m ⊂ GLn(K0) such that in any
m-valued field, any n-tuple is scrambled by an element of Gn,m.



Scrambling

Definition
x = (x1, . . . , xn) is scrambled if vi (xj) = vi (xk) for all i 6 m and
j , k 6 n.
µ ∈ GLn(K ) scrambles x if µ · x is scrambled.

Lemma (3.2)
Let v1, · · · , vm be valuations on K. Any n-tuple x can be
scrambled by some µ ∈ GLn(K0).

Proof.
Whenever vi (xj) > vi (xk), we find c ∈ K0 such that
vi ′(xj − cxk) = min(vi ′(xj), vi ′(xk)) for all i ′, and we replace xj by
xj − cxk . Iterating this process gives a scrambled vector in finitely
many steps.

Corollary (3.3)
For every n,m there is a finite Gn,m ⊂ GLn(K0) such that in any
m-valued field, any n-tuple is scrambled by an element of Gn,m.



Scrambling

Definition
x = (x1, . . . , xn) is scrambled if vi (xj) = vi (xk) for all i 6 m and
j , k 6 n.
µ ∈ GLn(K ) scrambles x if µ · x is scrambled.

Lemma (3.2)
Let v1, · · · , vm be valuations on K. Any n-tuple x can be
scrambled by some µ ∈ GLn(K0).

Proof.
Whenever vi (xj) > vi (xk), we find c ∈ K0 such that
vi ′(xj − cxk) = min(vi ′(xj), vi ′(xk)) for all i ′, and we replace xj by
xj − cxk . Iterating this process gives a scrambled vector in finitely
many steps.

Corollary (3.3)
For every n,m there is a finite Gn,m ⊂ GLn(K0) such that in any
m-valued field, any n-tuple is scrambled by an element of Gn,m.



Scrambling

Definition
x = (x1, . . . , xn) is scrambled if vi (xj) = vi (xk) for all i 6 m and
j , k 6 n.
µ ∈ GLn(K ) scrambles x if µ · x is scrambled.

Lemma (3.2)
Let v1, · · · , vm be valuations on K. Any n-tuple x can be
scrambled by some µ ∈ GLn(K0).

Proof.
Whenever vi (xj) > vi (xk), we find c ∈ K0 such that
vi ′(xj − cxk) = min(vi ′(xj), vi ′(xk)) for all i ′, and we replace xj by
xj − cxk . Iterating this process gives a scrambled vector in finitely
many steps.

Corollary (3.3)
For every n,m there is a finite Gn,m ⊂ GLn(K0) such that in any
m-valued field, any n-tuple is scrambled by an element of Gn,m.



Scrambling

Definition
x = (x1, . . . , xn) is scrambled if vi (xj) = vi (xk) for all i 6 m and
j , k 6 n.
µ ∈ GLn(K ) scrambles x if µ · x is scrambled.

Lemma (3.2)
Let v1, · · · , vm be valuations on K. Any n-tuple x can be
scrambled by some µ ∈ GLn(K0).

Proof.
Whenever vi (xj) > vi (xk), we find c ∈ K0 such that
vi ′(xj − cxk) = min(vi ′(xj), vi ′(xk)) for all i ′, and we replace xj by
xj − cxk . Iterating this process gives a scrambled vector in finitely
many steps.

Corollary (3.3)
For every n,m there is a finite Gn,m ⊂ GLn(K0) such that in any
m-valued field, any n-tuple is scrambled by an element of Gn,m.



R-independence

Lemma (3.5)
Let R be a weight n local integral domain, let R ( Frac(R) = K,
let τ = τR be local and weight n. Consider R̃ = O1 ∩ · · · ∩Om, the
integral closure of R. Fix a ∈ R \ {0}. Then we can find
y1, . . . , yn ∈ K scrambled and (a−1R)-independent.
Note that we are still working over K0.

Proof.
Consider the following formula:

ϕ(x) :
∧

µ∈Gn,m

“µ · x is (a−1R)-independent”.

In an ultrapower (K ∗,R∗), this formula is realised; in fact any
Rτ -independent n-tuple realises it.
Thus ϕ is realised in K , and there is µ ∈ Gn,m such that y = µ · x
is scrambled.
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Density of R

Lemma (3.7)
Keeping previous notations, R is dense in J(R̃) = m1 ∩ · · · ∩mm
with respect to the topology τ̃ = τR̃ .

Proof.
Let x ∈ J(R̃). For any U ∈ τ̃ , we want to find b ∈ (x + U) ∩ R.

Take a ∈ R ∩ x−1R ∩ J(R̃) non-zero and such that aR̃ ⊂ U. We
can find y ∈ K n scrambled and (a−2R)-independent. Scaling it, we
may assume y1 = 1 and thus y ∈ R̃n.

As R is of weigth exactly n, the set {1, x , ay2, . . . , ayn} is not
R-independent. The only possibility is to have
x ∈ R + aRy2 + · · ·+ aRyn, which means
x = b + ar2y2 + · · ·+ arnyn; thus x − b ∈ R̃ ⊂ U.
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Moving valuation rings

Lemma (3.8)
Keeping previous notations, we consider R̃ = O1 ∩ · · · ∩ Om;
suppose the Oi are pairwise independent. Then there is a ∈ K×
such that for every b ∈ K×, R ∩ bO2 * aO1.

Proof.
Take a non-zero c ∈ m1 ∩ · · · ∩mm. By the approximation
theorem, we can find a ∈ K such that v1(a) > v1(c) and
vi (a) = vi (c) for i 6= 1.

Fix b ∈ K×. Again, we can find u ∈ K such that
v2(u) > max(v2(b), v2(c)) and vi (u) = vi (c) for i 6= 2.

Now u ∈ bO2 and not in aO1. Since u ∈ m1 ∩ · · · ∩mm, we
conclude by density of R.



Moving valuation rings

Lemma (3.8)
Keeping previous notations, we consider R̃ = O1 ∩ · · · ∩ Om;
suppose the Oi are pairwise independent. Then there is a ∈ K×
such that for every b ∈ K×, R ∩ bO2 * aO1.

Proof.
Take a non-zero c ∈ m1 ∩ · · · ∩mm. By the approximation
theorem, we can find a ∈ K such that v1(a) > v1(c) and
vi (a) = vi (c) for i 6= 1.

Fix b ∈ K×. Again, we can find u ∈ K such that
v2(u) > max(v2(b), v2(c)) and vi (u) = vi (c) for i 6= 2.

Now u ∈ bO2 and not in aO1. Since u ∈ m1 ∩ · · · ∩mm, we
conclude by density of R.



Moving valuation rings

Lemma (3.8)
Keeping previous notations, we consider R̃ = O1 ∩ · · · ∩ Om;
suppose the Oi are pairwise independent. Then there is a ∈ K×
such that for every b ∈ K×, R ∩ bO2 * aO1.

Proof.
Take a non-zero c ∈ m1 ∩ · · · ∩mm. By the approximation
theorem, we can find a ∈ K such that v1(a) > v1(c) and
vi (a) = vi (c) for i 6= 1.

Fix b ∈ K×. Again, we can find u ∈ K such that
v2(u) > max(v2(b), v2(c)) and vi (u) = vi (c) for i 6= 2.

Now u ∈ bO2 and not in aO1. Since u ∈ m1 ∩ · · · ∩mm, we
conclude by density of R.



Moving valuation rings

Lemma (3.8)
Keeping previous notations, we consider R̃ = O1 ∩ · · · ∩ Om;
suppose the Oi are pairwise independent. Then there is a ∈ K×
such that for every b ∈ K×, R ∩ bO2 * aO1.

Proof.
Take a non-zero c ∈ m1 ∩ · · · ∩mm. By the approximation
theorem, we can find a ∈ K such that v1(a) > v1(c) and
vi (a) = vi (c) for i 6= 1.

Fix b ∈ K×. Again, we can find u ∈ K such that
v2(u) > max(v2(b), v2(c)) and vi (u) = vi (c) for i 6= 2.

Now u ∈ bO2 and not in aO1. Since u ∈ m1 ∩ · · · ∩mm, we
conclude by density of R.



V-topological coarsenings
We now consider arbitrary fields – not necessarily extending a
trivially valued infinite K0.

Lemma (4.1)
Let τ be a local weight n topology on an infinite field K. Suppose
τ1 and τ2 are 2 different V -topological coarsening of τ . Then for
all U ∈ τ there is V ∈ τ1 such that for all W ∈ τ2, we have
U ∩W * V .

Proof.
We move to an ultrapower (K ∗, τ∗, τ∗1 , τ∗2 ) and consider R, R1 and
R2, the rings associated with τ , τ1 and τ2.

We write R̃ = R1 ∩ R2 ∩ O3 ∩ · · · ∩ Om. We want to show:
∀c 6= 0∃a 6= 0∀b 6= 0, cR ∩ bR2 * aR1.

Dividing by c this is the conclusion of the previous lemma –
Applied on K ∗ above the field K0 = K .
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Comparing max ideals

Lemma (4.2)
Let τ be a local weight n topology on an infinite field K, let
R = Rτ ⊆ K ∗, and let R̃ = O1 ∩ · · · ∩ Om be its integral closure.
Then mi ∩ R * mj ∩ R for any i 6= j .

Proof.
Let τi , τj be the topology corresponding to Oi ,Oj . Fix U ∈ τ
bounded. Let V ∈ τj be such that for all W ∈ τi , U ∩W * V .

Take ε ∈ U∗ ∩
⋂

W∈τi W ∗ but outside of V ∗. We have ε ∈ mi but
ε /∈ mj .

Finally ε ∈ R because ε ∈ U∗ and U is bounded.
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Main result

Theorem (4.3)
Let τ be a local W -topology on a field K, then τ has a unique
V -topological coarsening.
Equivalently, in an ultrapower K ∗, the integral closure R̃ of Rτ is a
valuation ring.

Proof.
We write R̃ = O1 ∩ . . .Om. For each i , pi = mi ∩R is a prime ideal
of R. By the previous lemma, the pi are pairwise incomparable.

Let p be the max ideal of R. Let O be a valuation ring such that
R ⊆ O and m ∩ R = p.

We have R̃ ⊆ O so there is i such that Oi ⊆ O.

This implies p ⊆ pi , and since pj ⊆ p, they can’t be pairwise
incomparable unless there’s only 1.
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