dp-finite fields VI, part 1 dp-finite fields reading group – MSRI

Blaise Boissonneau PhD student of Franziska Jahnke

WWU, Münster

November 5, 2020

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Goal

Theorem (4.3)

Let *τ* be a local W -topology on a field K, then *τ* has a unique V -topological coarsening. Equivalently, in an ultrapower K^* , the integral closure \hat{R} of R_{τ} is a valuation ring.

KORK ERKER ADAM ADA

Multi-approximation

We work over a fixed infinite field K_0 . We assume all valuations are trivial when restricted to K_0 .

Multi-approximation

We work over a fixed infinite field K_0 . We assume all valuations are trivial when restricted to K_0 .

Lemma (3.1)

Let v_1, \ldots, v_m be valuations on a field K. For any $z, w \in K$, there is $c \in K_0$ such that $v_i(z - cw) = min(v_i(z), v_i(w))$ for all i.

Multi-approximation

We work over a fixed infinite field K_0 . We assume all valuations are trivial when restricted to K_0 .

Lemma (3.1)

Let v_1, \ldots, v_m be valuations on a field K. For any $z, w \in K$, there is $c \in K_0$ such that $v_i(z - cw) = min(v_i(z), v_i(w))$ for all i.

KORKAR KERKER SAGA

Proof.

Taking $c \in K_0$ such that $c \neq \operatorname{res}_i(\frac{z}{n})$ $\frac{z}{w}$) works.

Definition $\overline{x} = (x_1, \ldots, x_n)$ is scrambled if $v_i(x_i) = v_i(x_k)$ for all $i \leq m$ and $j, k \leq n$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Definition

 $\overline{x} = (x_1, \ldots, x_n)$ is scrambled if $v_i(x_i) = v_i(x_k)$ for all $i \leq m$ and $j, k \leq n$. $\mu \in GL_n(K)$ scrambles \overline{x} if $\mu \cdot \overline{x}$ is scrambled.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Definition $\overline{x} = (x_1, \ldots, x_n)$ is scrambled if $v_i(x_i) = v_i(x_k)$ for all $i \leq m$ and $j, k \leq n$. $\mu \in GL_n(K)$ scrambles \overline{x} if $\mu \cdot \overline{x}$ is scrambled. Lemma (3.2) Let v_1, \dots, v_m be valuations on K. Any n-tuple \overline{x} can be

KORKARYKERKER OQO

scrambled by some $\mu \in GL_n(K_0)$.

Definition $\overline{x} = (x_1, \ldots, x_n)$ is scrambled if $v_i(x_i) = v_i(x_k)$ for all $i \leq m$ and $j, k \leq n$. $\mu \in GL_n(K)$ scrambles \overline{x} if $\mu \cdot \overline{x}$ is scrambled. Lemma (3.2)

Let v_1, \dots, v_m be valuations on K. Any n-tuple \overline{x} can be scrambled by some $\mu \in GL_n(K_0)$.

Proof.

Whenever $v_i(x_i) > v_i(x_k)$, we find $c \in K_0$ such that $v_{i'}(x_j - cx_k) = \min(v_{i'}(x_j), v_{i'}(x_k))$ for all *i'*, and we replace x_j by $x_i - cx_k$. Iterating this process gives a scrambled vector in finitely many steps.

Definition $\overline{x} = (x_1, \ldots, x_n)$ is scrambled if $v_i(x_i) = v_i(x_k)$ for all $i \leq m$ and $j, k \leq n$. $\mu \in GL_n(K)$ scrambles \overline{x} if $\mu \cdot \overline{x}$ is scrambled. Lemma (3.2)

Let v_1, \dots, v_m be valuations on K. Any n-tuple \overline{x} can be scrambled by some $\mu \in GL_n(K_0)$.

Proof.

Whenever $v_i(x_i) > v_i(x_k)$, we find $c \in K_0$ such that $v_{i'}(x_j - cx_k) = \min(v_{i'}(x_j), v_{i'}(x_k))$ for all *i'*, and we replace x_j by $x_i - cx_k$. Iterating this process gives a scrambled vector in finitely many steps.

Corollary (3.3)

For every n, m there is a finite $G_{n,m} \subset GL_n(K_0)$ such that in any m-valued field, [an](#page-8-0)y n-tuple is scrambled by an [ele](#page-10-0)[m](#page-38-0)[e](#page-9-0)[nt](#page-10-0) [o](#page-0-0)[f](#page-38-0) $G_{n,m}$ $G_{n,m}$ $G_{n,m}$ $G_{n,m}$ [.](#page-0-0)

Lemma (3.5)

Let R be a weight n local integral domain, let $R \subseteq Frac(R) = K$, let $\tau = \tau_R$ be local and weight n. Consider $R = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$, the integral closure of R. Fix $a \in R \setminus \{0\}$. Then we can find $y_1,\ldots,y_n\in K$ scrambled and $(\mathsf{a}^{-1}R)$ -independent. Note that we are still working over K_0 .

Lemma (3.5)

Let R be a weight n local integral domain, let $R \subseteq Frac(R) = K$, let $\tau = \tau_R$ be local and weight n. Consider $R = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$, the integral closure of R. Fix $a \in R \setminus \{0\}$. Then we can find $y_1,\ldots,y_n\in K$ scrambled and $(\mathsf{a}^{-1}R)$ -independent. Note that we are still working over K_0 .

Proof.

Consider the following formula:

$$
\varphi(\overline{x}): \bigwedge_{\mu \in G_{n,m}} "\mu \cdot \overline{x} \text{ is } (a^{-1}R)\text{-independent}".
$$

Lemma (3.5)

Let R be a weight n local integral domain, let $R \subseteq Frac(R) = K$, let $\tau = \tau_R$ be local and weight n. Consider $R = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$, the integral closure of R. Fix $a \in R \setminus \{0\}$. Then we can find $y_1,\ldots,y_n\in K$ scrambled and $(\mathsf{a}^{-1}R)$ -independent. Note that we are still working over K_0 .

Proof.

Consider the following formula:

$$
\varphi(\overline{x}) : \bigwedge_{\mu \in G_{n,m}} "\mu \cdot \overline{x} \text{ is } (a^{-1}R)\text{-independent}".
$$

KORKARYKERKER POLO

In an ultrapower (K^*, R^*) , this formula is realised; in fact any R_{τ} -independent *n*-tuple realises it.

Lemma (3.5)

Let R be a weight n local integral domain, let $R \subseteq Frac(R) = K$, let $\tau = \tau_R$ be local and weight n. Consider $R = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$, the integral closure of R. Fix $a \in R \setminus \{0\}$. Then we can find $y_1,\ldots,y_n\in K$ scrambled and $(\mathsf{a}^{-1}R)$ -independent. Note that we are still working over K_0 .

Proof.

Consider the following formula:

$$
\varphi(\overline{x}) : \bigwedge_{\mu \in G_{n,m}} " \mu \cdot \overline{x} \text{ is } (a^{-1}R)\text{-independent".}
$$

In an ultrapower (K^*, R^*) , this formula is realised; in fact any R_{τ} -independent *n*-tuple realises it. Thus φ is realised in K, and there is $\mu \in G_{n,m}$ such that $\overline{y} = \mu \cdot \overline{x}$ is scrambled.

KORKAR KERKER SAGA

Lemma (3.7)

Keeping previous notations, R is dense in $J(\widetilde{R}) = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_m$ with respect to the topology $\widetilde{\tau} = \tau_{\widetilde{R}}$.

KORK ERKER ADAM ADA

Lemma (3.7)

Keeping previous notations, R is dense in $J(\widetilde{R}) = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_m$ with respect to the topology $\widetilde{\tau} = \tau_{\widetilde{R}}$.

Proof.

Let $x \in J(\widetilde{R})$. For any $U \in \widetilde{\tau}$, we want to find $b \in (x + U) \cap R$.

Lemma (3.7)

Keeping previous notations, R is dense in $J(\tilde{R}) = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_m$ with respect to the topology $\widetilde{\tau} = \tau_{\widetilde{R}}$.

Proof.

Let $x \in J(\tilde{R})$. For any $U \in \tilde{\tau}$, we want to find $b \in (x + U) \cap R$.

Take $a \in R \cap x^{-1}R \cap J(\tilde{R})$ non-zero and such that $a\tilde{R} \subset U$. We can find $\overline{y}\in K^{n}$ scrambled and $(a^{-2}R)$ -independent. Scaling it, we may assume $y_1 = 1$ and thus $\overline{y} \in \tilde{R}^n$.

KORKAR KERKER SAGA

Lemma (3.7)

Keeping previous notations, R is dense in $J(\tilde{R}) = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_m$ with respect to the topology $\widetilde{\tau} = \tau_{\widetilde{R}}$.

Proof.

Let $x \in J(\tilde{R})$. For any $U \in \tilde{\tau}$, we want to find $b \in (x + U) \cap R$.

Take $a \in R \cap x^{-1}R \cap J(\tilde{R})$ non-zero and such that $a\tilde{R} \subset U$. We can find $\overline{y}\in K^{n}$ scrambled and $(a^{-2}R)$ -independent. Scaling it, we may assume $y_1 = 1$ and thus $\overline{y} \in \tilde{R}^n$.

As R is of weigth exactly n, the set $\{1, x, ay_2, \ldots, ay_n\}$ is not R-independent. The only possibility is to have $x \in R + aRy_2 + \cdots + aRy_n$, which means $x = b + ar_2y_2 + \cdots + ar_ny_n$; thus $x - b \in \widetilde{R} \subset U$.

KORKAR KERKER SAGA

Lemma (3.8)

Keeping previous notations, we consider $\widetilde{R} = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$. suppose the \mathcal{O}_i are pairwise independent. Then there is a \in K^\times such that for every $b\in \mathsf{K}^{\times}$, $R\cap b\mathcal{O}_{2}\nsubseteq a\mathcal{O}_{1}.$

Lemma (3.8)

Keeping previous notations, we consider $\widetilde{R} = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$. suppose the \mathcal{O}_i are pairwise independent. Then there is a \in K^\times such that for every $b\in \mathsf{K}^{\times}$, $R\cap b\mathcal{O}_{2}\nsubseteq a\mathcal{O}_{1}.$

Proof.

Take a non-zero $c \in \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_m$. By the approximation theorem, we can find $a \in K$ such that $v_1(a) > v_1(c)$ and $v_i(a) = v_i(c)$ for $i \neq 1$.

Lemma (3.8)

Keeping previous notations, we consider $\overline{R} = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$; suppose the \mathcal{O}_i are pairwise independent. Then there is a \in K^\times such that for every $b\in \mathsf{K}^{\times}$, $R\cap b\mathcal{O}_{2}\nsubseteq a\mathcal{O}_{1}.$

Proof.

Take a non-zero $c \in \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_m$. By the approximation theorem, we can find $a \in K$ such that $v_1(a) > v_1(c)$ and $v_i(a) = v_i(c)$ for $i \neq 1$.

KORKARYKERKER POLO

Fix $b \in K^{\times}$. Again, we can find $u \in K$ such that $v_2(u) > \max(v_2(b), v_2(c))$ and $v_i(u) = v_i(c)$ for $i \neq 2$.

Lemma (3.8)

Keeping previous notations, we consider $R = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$; suppose the \mathcal{O}_i are pairwise independent. Then there is a \in K^\times such that for every $b\in \mathsf{K}^{\times}$, $R\cap b\mathcal{O}_{2}\nsubseteq a\mathcal{O}_{1}.$

Proof.

Take a non-zero $c \in \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_m$. By the approximation theorem, we can find $a \in K$ such that $v_1(a) > v_1(c)$ and $v_i(a) = v_i(c)$ for $i \neq 1$.

Fix $b \in K^{\times}$. Again, we can find $u \in K$ such that $v_2(u) > \max(v_2(b), v_2(c))$ and $v_i(u) = v_i(c)$ for $i \neq 2$.

Now $u \in b\mathcal{O}_2$ and not in $a\mathcal{O}_1$. Since $u \in \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_m$, we conclude by density of R.

KORKAR KERKER ST VOOR

We now consider arbitrary fields – not necessarily extending a trivially valued infinite K_0 .

Lemma (4.1)

Let *τ* be a local weight n topology on an infinite field K. Suppose *τ*¹ and *τ*² are 2 different V -topological coarsening of *τ* . Then for all $U \in \tau$ there is $V \in \tau_1$ such that for all $W \in \tau_2$, we have $U \cap W \not\subset V$.

We now consider arbitrary fields – not necessarily extending a trivially valued infinite K_0 .

Lemma (4.1)

Let *τ* be a local weight n topology on an infinite field K. Suppose *τ*¹ and *τ*² are 2 different V -topological coarsening of *τ* . Then for all $U \in \tau$ there is $V \in \tau_1$ such that for all $W \in \tau_2$, we have $U \cap W \not\subset V$.

Proof.

We move to an ultrapower $(\mathcal{K}^*, \tau^*, \tau_1^*, \tau_2^*)$ and consider R , R_1 and R_2 , the rings associated with τ , τ_1 and τ_2 .

We now consider arbitrary fields – not necessarily extending a trivially valued infinite K_0 .

Lemma (4.1)

Let *τ* be a local weight n topology on an infinite field K. Suppose *τ*¹ and *τ*² are 2 different V -topological coarsening of *τ* . Then for all $U \in \tau$ there is $V \in \tau_1$ such that for all $W \in \tau_2$, we have $U \cap W \nsubseteq V$.

Proof.

We move to an ultrapower $(\mathcal{K}^*, \tau^*, \tau_1^*, \tau_2^*)$ and consider R , R_1 and R_2 , the rings associated with τ , τ_1 and τ_2 .

KORKAR KERKER SAGA

We write $\widetilde{R} = R_1 \cap R_2 \cap \mathcal{O}_3 \cap \cdots \cap \mathcal{O}_m$. We want to show: $\forall c \neq 0 \exists a \neq 0 \forall b \neq 0$, cR ∩ bR₂ $\&$ aR₁.

We now consider arbitrary fields – not necessarily extending a trivially valued infinite K_0 .

Lemma (4.1)

Let *τ* be a local weight n topology on an infinite field K. Suppose *τ*¹ and *τ*² are 2 different V -topological coarsening of *τ* . Then for all $U \in \tau$ there is $V \in \tau_1$ such that for all $W \in \tau_2$, we have $U \cap W \nsubseteq V$.

Proof.

We move to an ultrapower $(\mathcal{K}^*, \tau^*, \tau_1^*, \tau_2^*)$ and consider R , R_1 and R_2 , the rings associated with τ , τ_1 and τ_2 .

We write $\widetilde{R} = R_1 \cap R_2 \cap \mathcal{O}_3 \cap \cdots \cap \mathcal{O}_m$. We want to show: $∀c ≠ 0∃a ≠ 0∀b ≠ 0, cR ∩ bR₂ ∉ aR₁.$

Dividing by c this is the conclusion of the previous lemma $-$ Applied on K^* above the field $K_0 = K$.

Lemma (4.2)

Let *τ* be a local weight n topology on an infinite field K, let $R = R_{\tau} \subseteq K^*$, and let $\widetilde{R} = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$ be its integral closure. Then $\mathfrak{m}_i \cap R \nsubseteq \mathfrak{m}_i \cap R$ for any $i \neq j$.

KORK ERKER ADAM ADA

Lemma (4.2)

Let *τ* be a local weight n topology on an infinite field K, let $R = R_{\tau} \subseteq K^*$, and let $\widetilde{R} = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$ be its integral closure. Then $\mathfrak{m}_i \cap R \nsubseteq \mathfrak{m}_i \cap R$ for any $i \neq j$.

Proof.

Let τ_i , τ_j be the topology corresponding to $\mathcal{O}_i, \mathcal{O}_j.$ Fix $U \in \tau$ bounded. Let $V \in \tau_j$ be such that for all $W \in \tau_i, \ U \cap W \nsubseteq V.$

Lemma (4.2)

Let *τ* be a local weight n topology on an infinite field K, let $R = R_{\tau} \subseteq K^*$, and let $\widetilde{R} = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$ be its integral closure. Then $\mathfrak{m}_i \cap R \nsubseteq \mathfrak{m}_i \cap R$ for any $i \neq j$.

Proof.

Let τ_i , τ_j be the topology corresponding to $\mathcal{O}_i, \mathcal{O}_j.$ Fix $U \in \tau$ bounded. Let $V \in \tau_j$ be such that for all $W \in \tau_i, \ U \cap W \nsubseteq V.$

Take $\varepsilon \in U^* \cap \bigcap_{W \in \tau_i} W^*$ but outside of V^* . We have $\varepsilon \in \mathfrak{m}_i$ but *ε /*∈ m^j .

Lemma (4.2)

Let *τ* be a local weight n topology on an infinite field K, let $R = R_{\tau} \subseteq K^*$, and let $\widetilde{R} = \mathcal{O}_1 \cap \cdots \cap \mathcal{O}_m$ be its integral closure. Then $\mathfrak{m}_i \cap R \nsubseteq \mathfrak{m}_i \cap R$ for any $i \neq j$.

Proof.

Let τ_i , τ_j be the topology corresponding to $\mathcal{O}_i, \mathcal{O}_j.$ Fix $U \in \tau$ bounded. Let $V \in \tau_j$ be such that for all $W \in \tau_i, \ U \cap W \nsubseteq V.$

Take $\varepsilon \in U^* \cap \bigcap_{W \in \tau_i} W^*$ but outside of V^* . We have $\varepsilon \in \mathfrak{m}_i$ but *ε /*∈ m^j .

KORKAR KERKER SAGA

Finally $\varepsilon \in R$ because $\varepsilon \in U^*$ and U is bounded.

Theorem (4.3)

Let *τ* be a local W -topology on a field K, then *τ* has a unique V -topological coarsening. Equivalently, in an ultrapower K^* , the integral closure \hat{R} of R_{τ} is a valuation ring.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Theorem (4.3)

Let *τ* be a local W -topology on a field K, then *τ* has a unique V -topological coarsening. Equivalently, in an ultrapower K^* , the integral closure \hat{R} of R_{τ} is a valuation ring.

Proof.

We write $R = \mathcal{O}_1 \cap \ldots \mathcal{O}_m$. For each *i*, $\mathfrak{p}_i = \mathfrak{m}_i \cap R$ is a prime ideal of R. By the previous lemma, the \mathfrak{p}_i are pairwise incomparable.

Theorem (4.3)

Let *τ* be a local W -topology on a field K, then *τ* has a unique V -topological coarsening. Equivalently, in an ultrapower K^* , the integral closure \hat{R} of R_{τ} is a valuation ring.

Proof.

We write $R = \mathcal{O}_1 \cap \ldots \mathcal{O}_m$. For each *i*, $\mathfrak{p}_i = \mathfrak{m}_i \cap R$ is a prime ideal of R. By the previous lemma, the \mathfrak{p}_i are pairwise incomparable.

Let p be the max ideal of R. Let $\mathcal O$ be a valuation ring such that $R \subset \mathcal{O}$ and $\mathfrak{m} \cap R = \mathfrak{p}$.

Theorem (4.3)

Let *τ* be a local W -topology on a field K, then *τ* has a unique V -topological coarsening. Equivalently, in an ultrapower K^* , the integral closure \hat{R} of R_{τ} is a valuation ring.

Proof.

We write $R = \mathcal{O}_1 \cap \ldots \mathcal{O}_m$. For each *i*, $\mathfrak{p}_i = \mathfrak{m}_i \cap R$ is a prime ideal of R. By the previous lemma, the \mathfrak{p}_i are pairwise incomparable.

Let p be the max ideal of R. Let $\mathcal O$ be a valuation ring such that $R \subset \mathcal{O}$ and $\mathfrak{m} \cap R = \mathfrak{p}$.

We have $\widetilde{R} \subseteq \mathcal{O}$ so there is *i* such that $\mathcal{O}_i \subseteq \mathcal{O}$.

Theorem (4.3)

Let *τ* be a local W -topology on a field K, then *τ* has a unique V -topological coarsening. Equivalently, in an ultrapower K^* , the integral closure \hat{R} of R_{τ} is a valuation ring.

Proof.

We write $R = \mathcal{O}_1 \cap \ldots \mathcal{O}_m$. For each *i*, $\mathfrak{p}_i = \mathfrak{m}_i \cap R$ is a prime ideal of R. By the previous lemma, the \mathfrak{p}_i are pairwise incomparable.

Let p be the max ideal of R. Let $\mathcal O$ be a valuation ring such that $R \subset \mathcal{O}$ and $\mathfrak{m} \cap R = \mathfrak{p}$.

We have $\widetilde{R} \subseteq \mathcal{O}$ so there is *i* such that $\mathcal{O}_i \subseteq \mathcal{O}$.

This implies $\mathfrak{p}\subseteq\mathfrak{p}_i$, and since $\mathfrak{p}_j\subseteq\mathfrak{p}_i$ they can't be pairwise incomparable unless there's only 1.