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Goal

Theorem (4.3)

Let T be a local W-topology on a field K, then T has a unique
V -topological coarsening.

Equivalently, in an ultrapower K*, the integral closure R of R, is a
valuation ring.
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We work over a fixed infinite field Ky. We assume all valuations
are trivial when restricted to Kj.
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Lemma (3.1)

Let v1,..., vy be valuations on a field K. For any z,w € K, there
is ¢ € Ko such that vi(z — cw) = min(vi(z), vi(w)) for all i.
Proof.

Taking ¢ € Ky such that ¢ # res;(Z) works. O
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Xj — cxi. Iterating this process gives a scrambled vector in finitely
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Scrambling

Definition

X = (X1,...,Xn) is scrambled if vj(x;) = vi(x) for all i < m and
Jik<n.

1 € GLy(K) scrambles X if u - X is scrambled.

Lemma (3.2)

Let vi,- -+, vy be valuations on K. Any n-tuple X can be
scrambled by some 11 € GL,(Kop).

Proof.

Whenever v;(x;) > vi(xx), we find ¢ € Ky such that

vir(xj — exk) = min(vj(x;), vir(xk)) for all i/, and we replace x; by
Xj — cxi. Iterating this process gives a scrambled vector in finitely
many steps. [

Corollary (3.3)

For every n, m there is a finite G, m, C GL,(Ko) such that in any
m-valued field, any n-tuple is scrambled by an element of G, p,.



R-independence

Lemma (3.5)

Let R be a weight n local integral domain, let R C Frac(R) = K,
let T = Tr be local and weight n. Consider R= O1N---NOy,, the
integral closure of R. Fix a € R\ {0}. Then we can find
Y1,--.,¥n € K scrambled and (a~!R)-independent.

Note that we are still working over Kp.
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R-independence

Lemma (3.5)

Let R be a weight n local integral domain, let R C Frac(R) = K,
let T = Tr be local and weight n. Consider R= O1N---NOy,, the
integral closure of R. Fix a € R\ {0}. Then we can find
Y1,--.,¥n € K scrambled and (a~!R)-independent.

Note that we are still working over Kp.

Proof.

Consider the following formula:

o(x) : /\ “i1-X is (a~'R)-independent”.
/JGGn,m

In an ultrapower (K*, R*), this formula is realised; in fact any
R--independent n-tuple realises it.

Thus ¢ is realised in K, and there is 1 € G, , such that y = p - X
is scrambled. O
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Lemma (3.7)
Keeping previous notations, R is dense in J(R) =my N ---Nmy,

with respect to the topology T = 7.

Proof.
Let x € J(R). For any U € 7, we want to find b € (x + U) N R.

Take a € RN x~1RN J(R) non-zero and such that aR C U. We
can find y € K" scrambled and (a_2R)-independent. Scaling it, we
may assume y; = 1 and thus y € R".

As R is of weigth exactly n, the set {1, x, ay»,...,ay,} is not
R-independent. The only possibility is to have

x € R+ aRy> + - - - + aRy,, which means
x=Db+ary,+ - -+ ar,y,; thus x — b € RcC U.

O
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Moving valuation rings

Lemma (3.8)

Keeping previous notations, we consider R=01N-NOm;
suppose the O; are pairwise independent. Then there is a € K*
such that for every b € K*, RN bO, ¢ a0;.

Proof.

Take a non-zero c € my N --- N'my,. By the approximation
theorem, we can find a € K such that vi(a) > vi(c) and
vi(a) = vi(c) for i # 1.

Fix b € K*. Again, we can find v € K such that
va(u) > max(va(b), va(c)) and v;(u) = vj(c) for i # 2.

Now u € bO> and not in a®7. Since u Em1 N ---Nm,,, we
conclude by density of R.

O
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We now consider arbitrary fields — not necessarily extending a
trivially valued infinite Kp.
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all U € T there is V € 11 such that for all W € 1, we have
unw¢gv.
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V-topological coarsenings

We now consider arbitrary fields — not necessarily extending a
trivially valued infinite Kp.

Lemma (4.1)

Let T be a local weight n topology on an infinite field K. Suppose
71 and T are 2 different V -topological coarsening of 7. Then for
all U € T there is V € 11 such that for all W € 1, we have
unw¢gv.

Proof.
We move to an ultrapower (K*, 7*, 7, 75) and consider R, Ry and
R>, the rings associated with 7, 71 and 7.

We write R = RRNRNO3N---NO,. We want to show:
Ve #03a#0Vb #0, cRN bR, € aRy.

Dividing by c this is the conclusion of the previous lemma —
Applied on K* above the field Ko = K.

OJ
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Comparing max ideals

Lemma (4.2)

Let T be a local weight n topology on an infinite field K, let
R=R, CK* andlet R=01N---NOy, be its integral closure.
Thenm; N R € m; N R for any i # j.

Proof.
Let 7;, 7; be the topology corresponding to O;, O;. Fix U € 7
bounded. Let V' € 7; be such that for all W € 7;, UNn W ¢_ V.

Take e € U" NNye,, W™ but outside of V*. We have € € m; but

e ¢ m.

O

Finally € € R because € € U* and U is bounded.
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Main result

Theorem (4.3)

Let T be a local W-topology on a field K, then T has a unique

V -topological coarsening. N
Equivalently, in an ultrapower K*, the integral closure R of R, is a
valuation ring.

Proof.
We write R=01N...0. Foreach i, p; = m;N R is a prime ideal
of R. By the previous lemma, the p; are pairwise incomparable.

Let p be the max ideal of R. Let O be a valuation ring such that
RCOandmnNR=p.

We have R C O so there is i such that O; C O.

This implies p C p;, and since p; C p, they can’t be pairwise
incomparable unless there's only 1.

OJ
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