d p - finite abelian $\sum_{i=1}^{n}$ broad and narrow sets

MSRI dp finite fields reading group November 24 2020 December 3 2020

Dp finite 1 Section ³ 1 Introduce the broad filter

2 Relate broadness to externally definable sets 3 Relate broadness to top rank

Broad Sets

Definition
\nLet
$$
X_{1},..., X_{n}
$$
 be definable sets and
\n $Y \subseteq X_{1} \times ... \times X_{n}$ be type-definable.
\n Y_{13} **bound** if there exist
\n $a_{11} \in X_{1}$ for all $1 \le i \le n_{1}$ if M such that
\n• For all, the $a_{11} \neq 1$ are pairwise distinct
\n• For any function $\eta : [n] \rightarrow N$
\n $(a_{1, \eta(1)}, a_{2, \eta(2)}, ..., a_{n, \eta(k)}) \in Y$.

\nOtherwise,
\nOtherwise, we say Y_{13} **harrow**,

Easy Desevations

\n(1)
$$
\forall \in X_i
$$
 is broad if and only if

\n \forall is infinite.

\n(2) \forall is local if and only if, for all most, then are sets $S_i \subseteq X_i$ with $|S_i| = m$.

\nfor all $1 \leq i \leq n$ such that $\prod_{i=1}^{n} S_i^2 \subseteq Y$.

\n(3) In the definition of broad, we may assume $(a_{i,j})$ is mutually indispensable.

\n \overline{a}_{i} is indiscville over

\n \overline{a}_{i} for all iefn.

Type definability in families (1) If ${D_b}_{b}$, is a definable family of definable subsets of $X_1X - XX_n$, then $\{b \in Y \mid \mathcal{D}_b \leq X, x - xX_n \text{ is broad } \}$ is type-definable. ² If A is ^a small set of parameters and D is a definable set. The set of types $(a_1,...,a_n,b)\in X$, $x-x$, $X_n\times Y$ such that τ_{f} a/Ab) is broad is type-definable

Post	
(1)	\bigcap_{b} is bond
$\bigwedge_{m \in \mathbb{N}} \exists (a_{i,j})_{i \in [m]} \left(\bigwedge_{\substack{a \in [m] \\ j \neq j \neq [m]}} a_{i,j} \neq a_{i,j} \land \bigwedge_{j \in [m] \neq [m]} (a_{i,j \in [m]}) \oplus \bigcup_{j \in [m] \neq [m]} (a_{i,j \in [m]}) \right)$ \n	
(2)	$\bigwedge_{m \in \mathbb{N}} \exists (a_{i,j})_{i \in [m]} \left(\bigwedge_{i \in [m]} a_{i,j} \neq a_{i,j} \right)$
$\bigwedge_{m \in \mathbb{N}} \exists (a_{i,j})_{i \in [m]} \left(\bigwedge_{i \in [m]} a_{i,j} \neq a_{i,j} \right)$	
$\bigwedge_{j \in [m]} \exists \{f \neq [n] \}$	
$\bigwedge_{j \in [m]} \{a_{i,j \in [m]} \}$	
$\bigwedge_{j \in [m]} \{a_{i,j \in [m]} \neq a_{i,j} \} \subseteq \bigcup_{b \neq [a]} (a_{i,j \in [a,a]}) \bigcup_{j \in [a] \neq [m]} (a_{i,j \in [m]}) \oplus \bigcup_{j \in [a] \neq [m]} (a_{i,j \in [a,a]}) \bigcup_{j \in [a] \neq [m]} (a_{i,j \in [m]}) \bigcup_{j \in [a] \neq [m]} (a_{i,j \in [m]}) \oplus \bigcup_{j \in [a] \neq [m]} (a_{i,j \in [a]}) \oplus \bigcup_{j \in [a] \neq [a]} (a_{i,j \in [a]}) \bigcup_{j \in [a] \neq [a]} (a_{i,j \in [a]}) \oplus \bigcup_{j \in [a] \neq [a]} (a_{i,j \in [a]}) \oplus \bigcup_{j \in [a] \neq [a]} (a_{i,j \in [a]}) \oplus \bigcup$	

厚

The broad filter let X, ..., Xn be infinite definable sets. The broad type-definable silosets of $X_1x...xX_n$ are a filter on type detinable sibsets of $X, x \mapsto Y_n$, (or, equivalently, the narrow sets are an ideal). Proof Fix Y , $Z \subseteq X$, x ... $x \times x$ type-definable. First, note that Y broad and $Y \subseteq Z$ then Z it broad. Secondly, suppose YUZ is broad. As observed above, this entails we can find some mutually indiscernible array $(C_{i,j})$ icini over some son all set A je IN

over which Y and Z are defined such that for all ⁱ ^c Enl Caijljeµ are pairwise distinct and for all y Ent ^w Caiwill icing C YU Z hence by indiscernibly we have ai ^y ic.cn ^c Y for all y In IN ^w Cai ycislie.my ^t Z for all ^y ⁿ N This shows either Y or Z is broad

Passage to Complete Types		
Leb	A be a small set of parameters and suppox	$X_{1,-1}$, X_{1} are A-definalte sets. Sp.
Y type-def inable one A. Then Y is broad: if and only if tp(A) is broad: for some a e Y.		
Proof	See Case 2.	
See Case 3.		
Extract a mutually indiscanible array j e N the broadcasts of Y. Consider by $\binom{n_0, n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8, n_9, n_9, n_{10}, n_{11}, n_{12}, n_{13}, n_{14}, n_{15}, n_{16}$		

Slices and Hyperplanes Lemma Assume NIP. Let X_{1}, X_{n} be infinite definable sets and $Y \subseteq X_1 \times -\times X_n$ be definable. Assume Y is broad and $n \ge 2$. 1. There is some $b \in X_n$ such that the slice" $\{a_1,...,a_{n-1}\}$ \in $\{x...x\}$ $\{x_{n-1}\}$ $(a_1,...,a_{n-1},b)$ \in $\{x\}$ is a broad subset of $X_1 \times ... \times X_{n-1}$. 2. There is a broad definable subset $D_{\leq m} \leq \chi_1 \times ... \times \chi_{n-1}$ and an infinite definable $D_n \subseteq X_n$ such that

(Den XDn) XX is a hyperplane in the sense that for every be Dn, the definable set $\{ (a_{1},...,a_{n-1}) \in \mathcal{D}_{\epsilon_{n}} \mid (a_{1},...,a_{n-1},b) \notin Y \}$ is narrow in X_1X-X_{n-1} .

Proof Fix A over which everything is
\ndelinable: Let (aij) left's be mutually indiscanble
\nover A withnessing Y is broad. Define
\n
$$
b_j = a_{nj}
$$
 for all $j \in U$.
\n $\frac{a_i}{a_3}$
\n $\frac{a_{i+1}}{a_{i+1}}$ are mutually indiscanile
\nover Aib, and tp^(a_{i,j}, a_{i,j}, a_{n+j}/Ab) is a
\n $\frac{a_{i,j}, a_{n-j,1}}{a_{i,j+1}} \text{ is in the slice}$
\n $\frac{a_{i,j}, a_{n-j,1}}{a_{i,j+1}} \text{ is in the slice}$
\n $\frac{a_{i,j+1}}{a_{i-1}} \text{ is in the slice}$
\n $\frac{a_{i,j+1}}{a_{i-1}} \text{ is in the slice}$
\n $\frac{1}{a_{i,j+1}} \text{ is in the side of } \frac{1}{a_{i-1}} \text{ is in the right of } \frac{1}{a_{i-1}}$

For (2), consider sequences
$$
c_1, c_2, ..., c_m
$$

\nsatisfying the following :
\n1. I = b,c, b₂ c₂ b₃ c₃ ... b_m cm b_{mn} b_{mn} c_{mn}...
\nis A-mdiscensible
\n2. t_p (a_{mn-1} a_{m+1} / A T) is broad
\n3. (a_{nn-1} a_{m+1} , c_j) f Y for j =1, ..., m.
\nThe empty sequence is one root sequence,
\nand since (a_{1,n-1} a_{m+1} , b_j) e Y for all j_j
\nHure is a bound, depending only on
\n(a_{1,n-1} a_{m+1}1) and Y, on the light d a
\nsequence one can build satisfying 1 4 3, by
\nNIP. So let m be maximal.

Proof: By an automorphism over
$$
AI
$$
, woq

\n $\bar{a} = (a_{1,1},..., a_{n-1,1}), \quad \int f + p(\vec{a}/AI\beta)$

\nis broad, then, by choice of $Cont_1$ and Ant_2 , $bo = 0$

\n $b, c, b, c, ...$ be a function of $bonne$.

\n $b, c, b, c, ...$ be a function of $bonne$.

\nNow, $1 - 1$ and $1 - 1$ and $1 - 1$ are the function of $Orx = 1$ and $Orx = 1$

$$
X_1 x_1 + X_1 x_1
$$
 defined by $P(\overline{x})$, let
\n \mathcal{D}_n be the subset of X_n defined by
\n $P(\overline{y})$. Because $b_1 c_1 b_2 c_2 ... b_{m+1} c_{m+1} b_{mn} b_{m+5}...$
\nis in discrete and non-constant, it follows
\n $C_{m+1} \notin \text{all}(A b_1 c_1 ... b_m c_m b_{m+1} b_{m+2} - 1)$
\n \mathcal{D}_n is in finite. Also \mathcal{D}_{2n}
\nis a broad subset of $X_1 X ... X_{n-1}$ because
\n \mathcal{E}_p ($a_{11} ... a_{m-1} / A_1$) is local.
\nNow we have to show that if $\beta \in \mathcal{D}_n$
\nthen that set
\n $\sum \overline{a} \in \mathcal{D}_{2n} |(\overline{a}, \beta) \notin Y_1^2$
\nis narrow in $X_1 X - X X_{n+1}$. Both

if
$$
\bar{a}
$$
 is in this set, by choice of
\n φ , ψ , φ ($\bar{\alpha}$ /AIB) is narrow, so
\nthis follows ∂_{φ} the 'passage to
\ncomplete types' lemma.

HyperplaneTheorem

Assume N17. Let
$$
X_1, ..., X_n
$$
 be definable and
\n Y a definable subset of $X_1x... \times X_n$. Then
\n Y is broad if and only if there exist
\ninfinite subsets $D_i \subseteq X_i$ such that
\n $(D_1x... \times D_n) \vee Y$ is a hyperplane — i.e.
\nfor every $b \in D_n$, the set
\n $\{ (a_1,..., a_{n-1}) \in D_1x... \times D_{n-1} | (a_{1},..., a_{n-1}, b) \notin P_1 \}$
\nis narrow in $X_1x... \times X_{n-1}$.
\n*Proof* "If "direction".
\n $D_1x - x D_n$ is clearly broad sine each D_i
\nis infinite. Consider the sets

What Y' is broad. 5, Y is broad.

\nNow we prove the only if "direction. 5b

\nWe assume Y is broad and proceed by

\ninduction on n. For n=1, D, = Y works V.

\nSo assume n=1. By the 'hyperplane

\nLemma', there are sets
$$
\sum_{cn} \leq X_{i} \times \cdots \times X_{n-l}
$$
, and $\sum_{cn} \leq X_{n}$ with \sum_{cn} broad, D, and $\sum_{cn} \leq X_{n}$ with a hyperplane.

\nBy induction, there are infinite *def*! sets

\n $\mathcal{D}_{i} \in X_{i}$ for i.e [n-1] such that

\n $H := (D_{i} \times \cdots \times D_{n}) \times D_{cn}$

\nis a hyperplane. By the slice lemma,

H is narrow For any *s* $b \in \mathcal{L}$ $\{ \bar{a} \in \mathcal{D}_{1} \times \ldots \times \mathcal{D}_{n} \mid \bar{a} \notin \mathcal{D}_{en} \} = H'$ $\{ \overline{a} \in D_{en} \mid (\overline{a}, b) \sqrt{\gamma} \}$ are looth narrow (as $(D_{\epsilon n} \times D_n) \setminus Y$ is a hyperplane) so their union is narrow. But their union contains $\{\overline{a}\in D, x=xD_{n-1}\mid (\overline{x},b)\notin Y\}$ so this set is narrow too. This show $D, x - x D_n \setminus Y$ is a hyperplane, as desired.

De finality in Fannlics

\nTheorem (3.11)

\nAsume NIP and eliminates
$$
J^{\infty}
$$
. Then

\nboxedness is **definable in families** on $\lambda x.x.Y_n$, i.e. if $\{\{\}_{b}\}_{b \in \mathbb{Z}}$ is a **definable family of**

\ndefinable subsets of $\lambda_1 x.x.x_n$, then

\n $\{\}_{b \in \mathbb{Z} \setminus \{\}$ is **broad**?

is definable

Proof Proof by induction on n. For n^{s 1}, this is equivalent to elimination of J^{∞} . Assume n 71 and $\{Y_{b}\}_{b\in\mathbb{Z}}$ is a definable Ω

$$
family \t dthimable \t subsets \t d\t \chi, \chi... \times \chi_n
$$

Let A be a set over which everything is
defined. We have proved

$$
\{b \in Z | Y_b \text{ is broad}\}
$$

is type-dtinsile, so if solius to show thus
set is V-detimalle. Fix $b_0 \in Z$ such that
 Y_{bo} is broad.
By the previous theorem, there exist infinite
definable sets $D_i = \{ (M; c_i) \text{ such that}$
for all be D_i .
 $\{ (a_{i_1...i}a_{i_1}) \in D_i x = R_i \}$ $(a_{i_1...i}a_{i_1}), (a_{i_1...i}a_{i_1}), (a_{i_1$

$$
(\forall y \in X_{n}) \left[\Psi_{n}(x;c_{n}) \rightarrow \prod_{j=1}^{b \mod} (x_{i,-j}x_{n-j}) \in X_{n-1})\right]
$$
\n
$$
((x_{1},...,x_{n-1},y) \notin Y_{b_{0}} \land \bigwedge_{i=1}^{a-1} \Psi_{i}(x_{i};c_{i})\bigg)
$$
\n
$$
(\text{d}t \quad \text{thus set} \quad \text{d}t_{\Psi_{i,-j}\Psi_{n}}(x_{j}z_{i-1}z_{n}) \rightarrow \text{d}t_{\Psi_{i,-j}\Psi_{n}}(x_{j}z_{i-1}z_{n}) \land \bigwedge_{i=1}^{b \mod} (T_{n}^{a}) \Psi_{i}(x_{i}z_{i}).
$$

Note that if
$$
b_{0}^{1} \in Z
$$
 and for some $c_{1}^{1} \cdot c_{n}^{2}$,

$$
F\psi'_{\varphi_{b\rightarrow b}\varphi_{a}}(b'_{b},c'_{b\rightarrow c}c'_{a}) + \text{tan}\gamma_{b'_{b}} \text{ is also broad.}
$$

$$
S_{0} \{b \in Z | \gamma_{b} \text{ is broad } 3 \text{ is defined by}
$$

$$
\bigcup_{\{n=1,2,\ldots,2n\}} \left(\exists_{z_{1},\ldots,z_{n}}\right) \psi_{\varphi_{1},\ldots,\varphi_{n}}^{'}\left(\|M\right)_{z_{1},\ldots,z_{n}}\right).
$$

Corollary of Definability in Familics
\nAssume T is NIP and eliminates
\n
$$
3^{\infty}
$$
. Let X_{1,-1}, X_n be defined
\nand $\{D_{\mu}\}_{\mu\gamma}$ a definite family of subsets
\nat X₁x-X X_n. There is some constant m,
\ndepanding on the family such that, for
\nbeY, the set D_{μ} is broad if and only if
\nthere exist {a_{ij}}i_i (an₁) is not that
\n• For all i.ein1, a_{i,j} $\neq a_{i,j}$, $f_{n-1} = f_{n-1}$
\n• For any η : In 3 -[m], $(a_{i,j}\eta_{10},...,a_{nj}\eta_{n})$ $\notin D_{\mu}$.

Externally debinable sets

\nAssume NIP and eliminates 3°, let

\n
$$
M \leq M
$$
 be a small model. Let

\n $X_1, ..., X_n$ be M-definable infinite sets

\nand $Y \subseteq X, x ... \times X_n$ be M-definable

\nand broad. Let $D_1, ..., D_k$ be M-definable

\nsubsets of $X, x ... \times X_n$ such that

\n $\forall (M) \subseteq \bigcup_{k=1}^{k} D_k$.

Then, there exist some k and some
M-definable broad set
$$
Y' \subseteq Y
$$
 such that
 $Y'(M) \subseteq D_k$.

There are the
$$
[2]
$$
 such that for every m , we can find some $(a_{i,j}^{\prime},.)_{i\in[n],j\in[m]}$ such that

\n(a) $a_{i,j}^{\prime} \in \mathbb{X}_{i}$

\n(b) $a_{i,j}^{\prime} \neq a_{i,j}^{\prime\prime}$ for $j \neq j^{\prime}$

\n(c) For any η : $[n] \rightarrow [m]$

\n(a) $(a_{i,j}^{\prime}, a_{i,j}^{\prime})$ for $j \neq j^{\prime}$

\n(c) For any η : $[n] \rightarrow [m]$

Digression on the Kamsey Statement

Kecall that " Fraissé class K of finite Crigid) L-structures is called a Parusey class if for all ASBEK and $f \leq w$ is CEK such that $C \longrightarrow (B)_{c}^{A}$ ie. for all $f: \begin{pmatrix} C \\ A \end{pmatrix} \rightarrow [r]$, there is $B' \in \begin{pmatrix} C \\ B \end{pmatrix}$ such that $f' \mid B' \choose A$

is constant, where (γ) = { γ' \leq χ \sim γ' \leq γ \leq

 e^{2} Lp₁, p_n = { \leq | K_{11} ..., Pn Where each Pi is ^a unary predicate let Kp ph be the class of finite L structures in which ^E is interpreted as a linear order, the Pi's are a partition, and $P_i < P_j$ for $i \in j$. This is a Fraisse class.

Exercise $K_{p_{1},\ldots,p_{n}}$ is a Kamsey class Hinti Permsey's theorem.

Then let
$$
A = \{1, ..., n\}
$$
 with
\n $P_i^A = \{i\}$ and S^A through multiply.
\nlet $B_m = \{i_1\}$: $i \in [n], j \in [m]\}$
\nwith S_m^m through letiographically and
\n $P_i^m = \{i_1\}$: $j \in [m]\}$
\nAs every structure in $\mathbb{K}_{1,...,p_{n-1}}^{p_{n-1}}$ is
\n 150 m when A are
\n 100 m when A are
\n 100 m when A is 100 m
\n 100 m for $\mathbb{K}_{p_1,...,p_{n-1}}^{p_1}$ implies
\n 100 m for $\mathbb{K}_{p_1,...,p_{n-1}}^{p_1}$ for \mathbb{K}_{p_1}

Note that if we owe given
Source A'e (
$$
\frac{Bm}{A}
$$
) Hence is

Some
$$
\eta_{A'}
$$
: $[n] \rightarrow [m]$ such that
\n $A' = \{\eta_{A'}(1) \rightarrow \eta_{A'}(n)\}$ with $P_i^{A'} = \{\eta_{A'}(i)\}$.

Given me
$$
M_{1}
$$
 debru a colorig
\n γ_{m} : $\begin{pmatrix} B_{N(m)} \\ h \end{pmatrix} \rightarrow [k]$

$$
\forall \begin{array}{c} \n\text{log}(\mathbf{A}^1) = \min\left\{ \begin{array}{c} \n\mathbf{i} \\ \n\mathbf{j} \n\end{array} \right\} \begin{array}{c} \n\text{log}(\mathbf{a}_1, \mathbf{a}_1(\mathbf{i})) \\ \n\text{log}(\mathbf{a}_2, \mathbf{a}_2(\mathbf{i})) \n\end{array} \begin{array}{c} \n\mathbf{f} \\ \n\mathbf{f} \n\end{array} \begin{array}{c} \n\mathbf{j} \\ \n\mathbf{k} \n\end{array}
$$

By the Remery property, there is some $B' \in \begin{pmatrix} B_{\mathsf{N}(\mathsf{m})} \\ B_{\mathsf{m}} \end{pmatrix}$ such that $\chi_{m} \mid \binom{B'}{A}$ is $constant$ with value $j(m)$. Then delimin (alig) iecnifican so that $(a_{ij}^{\prime})_{j\in[m]}$ is an increasing enumeration of $P_i^{\mathcal{B}'}$, we have that for any y . Lr.J \rightarrow lar $(a_{i,\eta}^{\prime},a_{i})\in\mathbb{D}_{j(\omega)}$ By the pigeonhole principle,

there is some k such that fur intimitily many me/h $\tilde{j}(m)$ = k. This is the k we are looking for. 图

end of

digression - $\overline{}$

By hovest definations, the
\nexttumably definite self
$$
(M \cap D_k
$$

\ncan be appropriate sets as follows:
\n 1 mtmndly definable sets as follows:
\n 1 thane is an M-définable family
\n $\{F_b\}$ such that, for every finite
\nsuset $S \subseteq Y(M) \cap D_k$, there
\n $S_b \in M$ such that
\n $S \subseteq F_b(M) \subseteq Y(M) \cap D_k$
\n $S \subseteq F_b(M) \subseteq Y(M) \cap D_k$
\n 1 the m as in the Goulay of definition
\n m thed family $\{F_b\}$.

Take
$$
(a_{i,j})_{i\in I_{-1}}
$$
 such that
\n $\begin{aligned}\na_{i,j} &\in X_{i}(M) \\
a_{i,j} &\in X_{i}(M) \\
\vdots &\n\begin{aligned}\na_{i,j} &\in X_{i}(M) \\
a_{i,j} &\in A_{i,j}, a_{i,j} \in J_{-1}\n\end{aligned}$ \nFor any $\eta: [M \rightarrow ImJ, A_{i\ell}$ by Eq.
\n $(a_{i,\eta(i,j-1)} a_{i,\eta(i,j)}) \in D_{\ell} \cap Y(M),$
\nlet $S = \{ (a_{i,\eta(i,j-1)} a_{i,\eta(i,j)}) : \eta: [M \rightarrow ImJ_{\ell}\} \}$
\nPut $S = \{ [M] \in Y(M) \cap D_{\ell} \}$.
\nThen T_{ℓ} is broad. Let $Y' = F_{\ell}$.
\nThen $Y'(M) \in Y(M)$ implies $Y' \subseteq Y$
\nand $Y' \subseteq D_{\ell}$.

The Finite Rank Setting lemma 3 IS let X, M, Vn be A-definable sets, and let $(a_1, a_1) \in \bigtimes_1 X - X X_n$. Suppose there is an infinite Sequence (bi) i_{G/N} of pairwise distinct elements such that $(a_1, ..., a_{n-1}, b_i) \equiv (a_1, ..., a_n)$ for all it N, and tp (YAB is broad, then t_{p} (a, -1 an/A) is broad.

Test (e.;
$$
\int_{i\in[n-1]} f(e^{i\theta}) e^{i\theta}
$$
 with $\int_{i\in\mathbb{N}} f(e^{i\theta}) e^{i\theta}$ is broad. Then

\nfor all $\eta: [n-1] \rightarrow \mathbb{N}$, we have

\n $(e_{i,\eta(1),...,}e_{n+1,\eta(n+1)}) = \int_{\mathbb{N}} (a_{i,\eta-1}, a_{n+1})$

hence

$$
(e_{i,\eta(i),-1}e_{n1,\eta(n-i)},b_i) \equiv_{A} (a_{i,-1},a_{n1},b_i)
$$

$$
E_{A}(a_{ij}..., a_{k-1}, a_{k})
$$
\nfor all *i*. Then, setting $e_{n,j} = b_{j}$ for all *j in* all *j in N* yields an array $(e_{i,j})_{j \in [n]}$ with *j in N in j in N j in N in j in N j in N j in N j i n j*

Will's Remark Suppose $X_1,...,X_n$ ane A -definante sets with $dp - \kappa (X_i) = r_i$. Then $if (a_{1},...,a_{n}) \in X, x... \times X_{n}$, then $d_p - r k \binom{\alpha_1 - \alpha_2}{\alpha_1}$ (A) $\leq r_1 + \dots + r_n$ by sub-additivity of dp-rank and, if $dp - fk$ $\binom{a_{1}}{1}$ $\binom{a_{2}}{1}$ $\binom{a_{3}}{1}$ \leq $\binom{a_{1}}{1}$ then $d\gamma$ - rk $\binom{a_{i}}{A^{a_{i-1}}a_{i+1}...a_n}$ or. Otherwise, for some i, we have d $2 - r k$ $($ ^a $(Aa_{n} \cdot a_{i1} a_{i1} \cdot a_{n})$ $<$ r_{i} , $r_{1}+...+r_{n} \leq dp-rk\binom{a_{1}}{A}a_{1}...a_{i_{r1}}a_{i_{r1}}...a_{n}+dp\binom{a_{1}-a_{i_{r1}}a_{i_{r1}}...a_{n}}{A}$ $\leq c_{i} + (c_{i}t - t_{i+1} + c_{i+1}t_{-1} + c_{n})$, contradiction

First Connection between rank and breadth
\nLemma 3.17
\nlet X, Y be infinite A-definable sets of
\nfinite dp-rank in and m respectively.
\nLet
$$
(a_1b) \in X \times Y
$$
 be a type with
\ndp-rk(a_1b/A) = n+m. Then there is a
\nsequence of pairwise distinct elements
\n(b_i):en such that $ab_i \equiv aba$ and
\nsuch that $ab_i \neq ab$ and
\nsuch that $ab_i \neq ab$ and
\nsuch that $ab_i \neq b$ (2/Ab₁...b_k) = n
\nfor all $l \in N$.

 $Proof$ let $(\forall i(x,y;z))_{i\in[n+m]}$ and $(c_{i,j})_{i\in[n+m]}$ form an ict pattern of depth $n+m$ in $tp({^{ab}/A})$. By compactners and Pausey, we can assume that in fact our parameters are ci,j_p le l'effatm.
ice MX1 jc 1NXlN which forms ^a mutually indiscernible array over A_j where $\mathcal{IN} \times \mathcal{N}$ is ordered lexicographically.

So we have
\n
$$
tp({}^{ab}/A) \cup \{P_i(x,y;c_{i,0,0}): i\in [n+m] \}
$$

\n $U\{-P_i(x,y;c_{i,j,k}): G_i k) \neq (0,0) \}$
\n $is unsistim.$
\nBy possibly moving $(ci_{ij,k})$ ieinm1 over A,
\nwe may assume this type is realized by
\nab. By the (proof of) sub-addibility of
\ndp-rk, there are m rows which form a
\nmurbdry indicates a result of
\nthe case, i=nt1,..., n+m. For each j= M,
\nthe case, i=nt1,..., n+m. For each j= M,
\nlet d j be a tuple enumerating (e_{ij,k})_{n is m}

The sequence
$$
(d_j)_{j \in M}
$$
 is an
Aa-indiscomplete sequence.
For each $j \in N$, pick some b_j with
 $b_j d_j \equiv_{A_{\alpha}} bd_0$.

Claim

For any
$$
l > 0
$$
,
def $\left(\begin{array}{c}a_{b-a}b_{c1}\\a_{b-1}b_{c-1}\end{array}\right)=n+lm.$

Proof d Claim

$$
s \leq \frac{1}{2}
$$
 by $s\sqrt{3}-a d d \sin \frac{1}{2}$ of $d p - \frac{1}{2}k$.
So $s \sinh a$ by exhibit $(n + km)$ sequences
forming a mutually indiscanible array over A,
but with $n = n + 3k$ which is *indiscanible*

over
$$
Aab_{o-1}b_{l-1}
$$
.
\n• For $1 \le i \le n$, the sequence
\n $(c_{i,0,k})_{k \in \mathbb{N}}$
\n $anis to be indiscernible over$
\n $ab = ab_o$ $sinu$
\n $\frac{1}{2} \Psi_i(a_1b_0; c_{i,j,k}) \Leftrightarrow (j_{ik}) = (0,0).$

hence

$$
\models \forall \zeta (a_1^{\prime} b_0^{\prime}, c_{i_1 a_1 b}^{\prime}) \Leftrightarrow b = 0.
$$

\n- For
$$
n < i \le n+m
$$
, and for $0 \leq j \leq l$,
\n- the sequence $(c_{i,j,k})_{k \in N}$
\n- fails to be indiscenible over a_{j}
\n- because\n $\sharp \psi_{i}(a_{i}b_{j})c_{i,j,k} \Leftrightarrow \sharp \psi_{i}(a_{j}b)c_{i,o,k}$
\n- $\Leftrightarrow k=0$.
\n

These sequences from a mutually instance,
\narray by the mutual indiscernibility of
\n(cijile) ieInt, (jile) e M* M.
$$
\mathbf{E}_{\text{ch.m.}}
$$

\nNow to conclude, we apply the
\nremark to deduce
\n $dp-rke\left(\frac{a}{Ab_{ob_{1}}\cdot b_{l-1}}\right)=n$

for each
$$
l > 1
$$
. Moreover, by the same,
\n $dp - r!e^{b\ell/4}Aab_{0}bldots b_{\ell-2}} = m > 0$
\nso $b_{\ell} \notin ac((Aab_{0}bldots b_{\ell-1}), s_0)$ the
\n b_{j} are pairwise distinct.

Deposition 3.19

\nFrom each
$$
3.19
$$

\nFor each $i = 1, \ldots, n$ let X_i be a definite of finite S_i and S_i are defined as follows:

\nFor each $i = 1, \ldots, n$ let X_i be a definite of finite S_i and S_i be the S_i and S_i are the S_i and S_i

Price
$$
(a_{1},...,a_{n}) \in Y
$$
 such that

\n
$$
dp - r \cdot e^{-a_{1},...,a_{n}}/A) = r_{1}+r_{n}
$$
\nBy the technical lemma, Hence is a

\nsequence $(b_{j})_{j \in M}$ of pairwise distinct

\n
$$
elements \quad \text{such that}
$$
\n
$$
(a_{1},...,a_{n-1},b_{j}) \equiv_{A} (a_{1},...,a_{n-1},a_{n})
$$

and

$$
dp-rk\binom{a_{1},...,a_{m}}{A_{b_{1},..,b_{j}}}=r_{1}...+r_{n-1}
$$

for all $j \in \mathbb{N}$. By induction,
 $+p\binom{a_{1}...a_{m1}}{A_{b_{1}...b_{j}}}$ is broad for all j , hence
 $tp\binom{a_{1},...,a_{m1}}{A_{b_{1}}...B_{j}}$ is broad. Hence
 $+p\binom{a_{1},...,a_{m}}{A_{b_{1}}...B_{j}}$ is broad, by our first lemma.

This shows Y is broad. **DESCRIPTION**

Quasi-minimality

Definition

A definable set D is called quasi minimal if D has finite dp rank in ⁰ and every definable subset $D' \subseteq D$ has either rank O or n. Equivalently, every infinite definable subset of D has

rawk n.

Observation 1. dp-rk 1 = quasiminimal Observation 2 : Every infinite definable set of finite dp rk has an infinite quasi minimal definable subset

Main Theorem Assume $NIP.$ let $X_{i},...,X_{n}$ be quasi minimal definable sets of rank r_1 , r_n respectively. Let $Y \subseteq X_1 \times ... \times X_n$ be definable Then Y is broad if and only if $dp - ck(Y) = r_1 + ... + r_n$. P_{root} By definition, r_i >0 $f_{\alpha i}$ all ie [n]. "if" direction was done above. "only if" will be proven by induction on n. $h = 1$
 γ_{1} quasi-minimal γ_{2} $Y \subseteq X$ is broad $\iff Y$ is infinite \iff dp-rh (Y) =r

Now assume
$$
n > 1
$$
, and let Y be broad.
\nBy the hyperplane lemma, there are infinite
\ndefinable sets $D_1 \le X_1, ..., D_n \le X_n$ such that
\nfor every $b \in D_n$, the set
\n $H_b := \{(a_{i,j}, a_{n-1}) \in D_1 \times ... \times D_{n-1} | (a_{i,j}, a_{n-1}, b) \notin \mathbb{Z}\}$
\nis narrow, as a subset of $X_1 \times ... \times X_{n-1}$,
\nBy quasi-minimality, $Ap \cdot \text{rk}(D_i) = r_i$, for all
\ni.e. $\ln 1$. Define H and Y' by
\n $H = (D_1 \times ... \times D_n) \times Y = \bigsqcup_{b \in D_n} H_b$.
\n $Y' = (D_1 \times ... \times D_n) \times Y$.

$$
x_{2}
$$

\n $\frac{1}{P_{2}}$
\n $\frac{1}{P_{1}}$
\n

But
$$
P_1x - x D_n = H_0Y^1
$$
 and
dp-rk $(P_1x...x D_n) = r_1 + ... + r_n$
So $d_{P} - r k(\tau)$ = $r_1 + ... + r_n$

$$
50 \text{ dp-rk}(Y) = r_1 + ... + r_n.
$$

Definition in Family and eliminates 3°.

\nAs: 100 and eliminates 3°.

\nLet
$$
X_1, ..., X_n
$$
 be quasi-minul definable sets of finite dp-rank.

\nLet $r = 4p - r!e(X_1 \times ... \times X_n)$.

\nGiven a definable family $\{D_b\}_{b \in V}$ of subsets of $X_1 \times ... \times X_n$, the set of a block, and $d_p - r!e(D_p) = r$ is default, and $d_p - r!e(D_p) = r$ is default, and $d_p - r!e(D_p) = r$ if and only if there are $S_i \subseteq X_i$ with $|S_i| = m$.

\nFor $i \in [n]$ such that $S_i \times ... \times S_n \subseteq D_p$.