dp-finite abelian groups broad and narrow sets

Broad Sets

Type-definability in families (1) If {Db} is a definable family of definable subjects of X, X ... X Xn, then Eber Du EX, x- x Xn is broad f is type-definable. (2) If A is a small set of parameters and D is a definable set. The set of types (a,...,an,b) eX, x ... x Xn x Y such that tp (Ab) is broad is type-definable.

R

The broad filter let X, ..., Xn be infinite definable sets. The broad type-definable subsets of X.X...X Xn ave a filter on type definable Slosets of X, X-X Xn, (or, equivalently, the narrow sets are an ideal). Proof Fix Y,Z = X, X ... X Xn type-definable. First, note that Y broad and Y 5 2 then Zil broad. Secondhy, Suppose YUZ is broad. As observed above, this entails we can find some mutually indiscervible avray (ai,j) ietni over some small set A, je m

over which Y and Z are defined,
such that, for all
$$icEnl_{1}$$
 $(a_{ijj}l_{jeIN})$ are pairwise
distinct and for all $q:[n] \rightarrow W$,
 $(a_{i}, q_{(i)})_{i\inEnl} \in Y \cup Z$,
hence, by indiscernibility, we have
 $(a_{i}, q_{(i)})_{i\inEnl} \in Y$
for all $q:Enl \rightarrow N$ or
 $(a_{i}, q_{(i)})_{i\inEnl} \in Z$
for all $q:Enl \rightarrow N$. This shows either
 Y or Z is broad.

Slices and Hyperplanes Lemma Assume NIP. Let X1,..., Xn be infinite definable sets and Y = X, x-- X Xn be definable. Assume Y is broad and n 22. 2. There is some be Xn such that the "slice" { (a,,.., an-1) ε χ, x... x χη-1 (a, ..., a, +, b) ε Υ} is a broad subset of X, X-X Xn1. 2. There is a broad definable subset Den E X, X X X n-1 and an infinite defined the $D_n \subseteq X_n$ such that

(Den XDn) XY is a hyperplane in the sense that for every b & Dn, the definable set [(a1,...,an-1)EDen | (a1,...,an+1,b) & Y} is narrow in X, X-X Xng.

Prod Fix A over which everything is
definable. Let
$$(a_{ij})_{i\in U}$$
 be montually indiscercible
over A witnessing Y is broad. Define
 $b_j = a_{nj}$ for all jew.
 $\overline{a_1}$
 $\overline{a_2}$
 $\overline{a_3}$
 $\overline{b} = \overline{a_n}$
Note $(a_{ij})_{i\in Uni}$ are motually indiscervible
over A \overline{b} , and $tp(a_{inj}, a_{ni}, a_{ni}, A_{\overline{b}})$ is a
broad type in $X_1 X - X X_{n-1}$, also
 $(a_{i,1}, a_{n-1}, 1)$ is in the slice
 $\{(a_{i,-1}, a_{n-1}, 1) \in Y_i X - X X_{n-1}, [a_{i-1}, a_{n-1}, b_i] \in Y_i\}$
which shows [1]. [Nobise this did not ose NIP].

$$\overline{a_{i}}_{a_{i}} = \overline{a_{n}}_{a_{i}} = \overline{a_{i}}_{a_{i}} = \overline{a_{i}}_{a$$

Proof By an automorphism over AI, whog

$$\overline{a} = (a_{1,1}, ..., a_{n-1,1})$$
. If $tp(\overline{a}/AI\beta)$
is broad, then, by choice of cut and
the 2nd billet, we have
 $b_1c_1 b_2c_2... b_m c_m b_{m+1}\beta b_{m+2} c_{m+2}...$
is A-indiscurvible, contradicting the
maximality of M.
Then there are formulas $P(\overline{x}) \in tp(a_{m-1}a_{m+1}/AI)$
and $ty e tp(c_{m+1}/AI)$ such that
 $P(\overline{a}) \wedge P(\beta) \wedge ((\overline{a}, \beta) \notin Y)$
entails $tp(\overline{a}/AI\beta)$ is narrow.
Let D_{cn} be the subset of

X, x = x X_{n+1} defined by
$$P(\overline{x})$$
, let
 D_n be the coloset of X_n defined by
 $rf(y)$. Because $b_1c_1b_2c_2 \dots b_{n+1}c_{n+1}b_{n+2}b_{n+3}\dots$
is indiscernible and non-constant, it follows
 $C_{mn} \not\in aul(A b_1c_1\dots b_mc_mb_{n+1}b_{n+2}\dots)$
Therefore, D_n is infinite. Also D_{cn}
is a broad subset of X, x = xX_{n-1} because
 $tp(a_{111} \dots a_{n-1})(A_{T})$ is broad.
Now we have to show that if $\beta \in D_n$
then the set
 $\xi \ \overline{a} \in D_{cn} | (\overline{a}, \beta) \notin Y \ \overline{\beta}$
is narrow in X, x = x X_{n-1}. But

if
$$\overline{a}$$
 is in this set, by choice of
 $l, nf, tp(\overline{a}/AIf)$ is narrow, so
this follows by the passage to
complete types lemma.

Hyperplane Theorem

Assume NIP. Let
$$X_{1,...,} X_{n}$$
 be definable and
Y a definable subset of $X_{1}X_{...} \times X_{n}$. Then
Y is broad if and only if there arist
infinite subsets $D_{i} \subseteq X_{i}$ such that
 $(D_{1}X_{...} \times D_{n}) \setminus Y$ is a hyperplane -i.e.
for every $b \in D_{n}$, the set
 $\{(a_{1,...,} a_{n-1}) \in D_{1}X_{...} \times D_{n+1} \mid (a_{1,...,} a_{n-1}, b) \notin Y\}$
is navrow in $X_{1}X_{...} \times Y_{n-1}$.
Proof "If" direction:
 $D_{1}X - X D_{n}$ is clearly broad since each D_{i}
is infinite. Consider the sets

Host Y' is broad. So Y is broad.
Now we prove the only if " direction. So
we assume Y is broad and proceed by
induction on n. For n=1, D, = Y works V.
So assume n=1. By the 'hyperplane
lemma', there are sets
$$D_{ch} \subseteq X_1 \times \cdots \times X_{n+1}$$
,
and $D_{rs} \subseteq X_n$ with D_{ch} broad, D_n
infinite, and $(D_{ch} \times D_n) \times Y$ a hyperplane.
By induction, there are infinite det!! sets
 $D_1 \subseteq X_1$ for $i \in [n-1]$ such that
 $H' := (D_1 \times \cdots \times D_n) \cdot D_{ch}$
is a hyperplane. By the slice lemma,

H' is narrow. For any be Dn, { ā e D, x-x D, | ā \$ D, }=H' { = Den | (=, b) / Y} are both narrow (as (Den X Dn) 1 is a hyperplane) so their union is narrow. But their union contains {aeD, x...xD, (=,6) #Y} so this set is narrow too. This show Dix-XDn IY is a hyperplane, as desired.

is definable.

Proof Proof by induction on n. For nº1, this is equivalent to elimination of Jos. Assure n71 and EYB Jbez rs a definable family of definable subsets of X, X...X Xn.

let A be a set over which exercitive is
defined. We have proved

$$\left\{b \in \mathbb{Z} \mid Y_{b} \text{ is broad}\right\}$$

is type-definable, so it suffies to show this
set is V-definable. Fix bo $\in \mathbb{Z}$ such that
 Y_{bo} is broad.
By the previous theorem, there exist infinite
definable sets $D_{i} = Y_{i}(\mathbb{M}; c_{i})^{-}$ such that
for all $b \in D_{n}$
 $\left\{(a_{i,\dots,a_{n}}) \in D_{i} \times - \times D_{n} \mid (a_{i,\dots}, a_{n}, b) \notin V_{b}^{-}\right\}$
is narrow. Reform lating this syntactically,
if $b_{i} \in \mathbb{Z}$ and Y_{b} is broad

$$(\forall y \in X_n) \left[\forall_n (x', c_n) \rightarrow \neg \left[- \right]^{broad} (\chi_{1, \dots, \chi_{n-1}}) \in X, x \dots X_{n-1} \right] \\ \left((\chi_{1, \dots, \chi_{n-1}, y}) \notin Y_{b_0} \land \bigwedge (Y'_i(x; ; c')) \right] \\ (\text{all Havis set } \Psi_{\varphi_{n-1}, \varphi_n} (b_0; c_{1, -\gamma}, c_n).$$

let
$$4'_{\psi_{1,\dots,\psi_{n}}}(x_{j}z_{1,\dots,z_{n}}) = 4'_{\psi_{1,\dots,\psi_{n}}}(x_{j}z_{1,\dots,z_{n}}) \wedge \bigwedge_{i=1}^{\infty} (\exists x_{i}) \psi_{i}(x_{i};z_{i})$$
.
Note that if $b_{o}' \in \mathbb{Z}$ and for some $c_{i,\dots,i}c_{n}'$,
 $\notin 4'_{\psi_{1,\dots,\psi_{n}}}(b_{o}'_{o},c_{1,\dots,c_{n}}')$ then $Y_{b_{o}}'$ is also broad.
So $\{b \in \mathbb{Z} \mid Y_{b} \text{ is broad } \}$ is defined by
 $\bigcup_{\psi_{1,\dots,\psi_{n}}} (\exists z_{1,\dots,z_{n}}) \wedge \psi_{\psi_{1,\dots,\psi_{n}}}(M'_{i}; z_{1,\dots,z_{n}})$.

Corollary of Definability in Families
Assume T is NIP and eliminates
Joo. Let X1, ..., Xn be definable sets
and
$$\{D_k\}_{k\in Y}$$
 a definable family of subsets
of X1, X... Xn. There is some constant m,
depending on the family such that, for
be Y, the set D_k is broad if and only if
there exist (aij liebni, jebni) such that
• For all i elni, aij # ai, j', for $j \neq j'$.
• For any $\eta' [n] \rightarrow [m]$, (a, $\eta(u)$, ..., $\eta_n \eta(n) \neq D_k$.

Externally definable sets
Assure NIP and eliminates
$$\exists^{n}$$
, let
 $M \leq IM$ be a small model. Let
 $X_{1,...,} X_{n}$ be M -definable infinite sets
and $Y \leq X_{1} \times ... \times X_{n}$ be M -definable
and broad. Let $D_{1,...,} D_{\ell}$ be M -definable
subsets of $X_{1} \times ... \times X_{n}$ such that
 $Y(M) \subseteq \bigcup_{k=1}^{\ell} D_{k}$.

Then there exist some k and some
$$M$$
-definable broad set $Y' \subseteq Y$ such that $Y'(M) \subseteq D_k$.

Proof
As Y is broad, for each

$$m \in \mathbb{N}$$
, there is an array
(aij) is [m], j \in [m] such that
(a) $a_{ij} \in \mathbb{N}$; (or even Xi(M))
(b) $a_{ij} \notin a_{ij}$; for $j \neq j$?
(c) for any η : [m] \rightarrow [m],
($a_{i,\eta}u_{i}$) is [m] \notin (or Y(M)).
By Remony's theorem for
convextly partitioned linear orders,

Digression on the Ramsey Statement

Recall that " Froisse class IK of fruite (rigid) Lestructures is alled a Pausey class if for all ASIBEK and rew, is CEIK such that $C \longrightarrow (B)^{A}_{r}, i e$. for all $f: \begin{pmatrix} C \\ A \end{pmatrix} \rightarrow [r]$, there is $B' \in \begin{pmatrix} C \\ B \end{pmatrix}$ such that $f \begin{bmatrix} B' \\ A \end{bmatrix}$

is constant, where $\begin{pmatrix} X \\ Y \end{pmatrix} \in \{Y' \in X \mid Y' \cong Y\}.$

 $let L_{P_{1},P_{n}} = \{ \leq, P_{1}, \dots, P_{n} \}$ where each P: is a many predicate let IKP. Ph be the class of finite l-structures in which 5 is interpreted as a linear order, the Pis are a partition, and Pi < P. for iej. This is a Fraissé class.

Exercise

Kpurch is a Ramsey class. Hinti Ramsey's theorem.

Then let
$$A = \{1, ..., n\}$$
 with
 $P_i^A = \{i\}$ and \leq^A interpreted naturally.
Let $B_m = \{(i,j): i \in [n], j \in [m]\}$
with \leq^{B_m} interpreted lexicographically and
 $P_i^{B_m} \{(i,j): j \in [m]\}$
As every structure in $K_{P_{i,j-1}}P_m$ is
rsomorphic to a substructure of one
of the B_m 's, the Paursey
property for $K_{P_{i,j}-i}P_m$ implies:
for every $m \in N$, there is $N(m) \in N$
such that
 $B_{NKm} = \{B_m\}_{k}$.

Some
$$\eta_{A'}$$
: $[n] \rightarrow [m]$ such that
 $A' = \xi \eta_{(1)} - \eta_{A'}(n) \xi$ with
 $P_{i}^{A'} = \xi \eta_{A'}(i) \xi$.

Given me
$$M$$
, define a coloring
 $\chi_{m'}$, $\begin{pmatrix} B_{N(m)} \\ A \end{pmatrix} \longrightarrow [le]$

$$M_{m}(A') = \min \left\{ \frac{i}{g} \right\} \left(a_{i, M_{A'}(i)} + D_{i} \right)$$

By the Rennery property, there is some B'e (BNM) B such that $\mathcal{X}_{n} \begin{bmatrix} B' \\ A \end{bmatrix}$ is constant with value j(m). Then defining (aij) ieturijetur) so that (a'ij) jetm) is an increasing envienntion of Pi^B, we have that for any y. En] > En], $(a_{i,\eta(i)}) \in D_{j(m)}.$ By the pigeonhole principle,

there is some k such that for intrimitely many mEIN, j(m)=k. This is the k we are looking for. Z

end of

digression -

By honest definitions, the
externally definable set
$$Y(M) \cap D_k$$

can be approximated by
internally definable sets as follows:
there is an M-definable family
 $\{F_b\}$ such that, for every finite
subset $S \subseteq Y(M) \cap D_k$, there
is be M such that
 $S \subseteq F_b(M) \subseteq Y(M) \cap D_k$.
Take mas in the Corollary of definability
of families, for the family $\{F_b\}$.

Take
$$(a_{i,j})_{i \in In1}$$
 such that
 $a_{i,j} \in X_i(M)$
 $a_{i,j} \neq a_{i,j}$, for $j \neq j!$
 $For any $q:In3 \rightarrow Im3$, the tople
 $(a_{i,q(M_1,\dots)}, a_{n,q(M_1)}) \in D_{L} \cap Y(M)$.
Let $S = \{(a_{i,q(H_1,\dots)}, a_{n,q(M_1)}): q:In3 \rightarrow Im3\}$?
Pick b such that
 $S \equiv F_b(M) \leq Y(M) \wedge D_{L}$.
Then F_L is broad. Let $Y' = F_b$.
Then $Y'(M) \equiv Y(M)$ implies $Y' \in Y$
and $Y' \in D_{L}$.$

The Finite Rank Setting Lemma 3.15 let X1,..., Xn be A-definable sets, and let (a,,.., an I & X, X ... X Xn. Suppose there is an infinite seguence (bi): 61N of pairwise distinct elements such that $(a_1, \ldots, a_{n-1}, b_i) \equiv (a_{1,\ldots}, a_n)$ for all iEN, and tp (au, -, and tp (Ab) is broad, then tp (a, -, an A) is broad.

Proof let
$$(e_{i,j})_{i \in [n-1]}$$
 witness that
 $t_p(a_{i,\dots,a_{n-1}}A\overline{L}) \quad is broad.$ Then
for all $y:[n-1] \rightarrow M(i)$, we have
 $(e_{i,\eta(i),\dots,e_{n-1},\eta(n-1)}) = (a_{i,\dots,q_{n-1}})$

hence

$$(e_{1,\eta(1)}, \dots, e_{n_{1},\eta(n_{1})}, b_{1}) \equiv (a_{1,\dots,\eta(n_{1})}, b_{1}) = A$$

$$= \sum_{A} (a_{i_1,...,a_{n-1},a_n})$$

for all i. Then, setting $e_{n,j} = bj$ for all
 $j \in M$ yields an avray $(e_{i,j})_{i \in [n]}$
 $j \in M$ witnessing that $b_p(a_{i_1,...,a_n}/A)$ is
broad.

Will'S Remark Suppose X1, ..., Xn are A-definable sets mith dp-rk(X;)=r;. Then if (a,,--, an) = X, x ... x Xn, then $dp - rk(a_{1,-3}a_n/A) \in r_1 + - + r_n,$ by sub-additivity of Jp-rank and it dp-rk("1,-)"(A)=r,t-trn, then dz-rk("/Aa,...ainain...an)=ri. Otherwise, for some i, we have dp-rk("/Aa,...ainain...an) <r;, => r1+...+rn < dp-rk (Aan ain ain ain - an)+ dp (an - ain ain an /) < $r_{i} + (r_{1} + - + r_{i+1} + r_{i+1} + - - + r_{n})$, contradiction

First connection between rank and breadth
lemm 3.17
let X, Y be infinite A-definable sets of
finite dp-rank n and m respectively.
let
$$(a,b) \in X \times Y$$
 be a type with
 $dp-rk(a,b/A) = n+m$. Then there is a
sequence of pairwise distinct elements
 $(b_i)_{i \in N}$ such that $ab_i = ab$ and
such that $dp-rk({}^{a}/Ab_1...b_{R}) = n$
for all $l \in N$.

Proof let (Yi(X,Y;Z;))iE[n+m] and (ci,j);ein+m] form an ict-pattern of jean depth n+m in tp (ab/A). By compactners and Paursey, we can assume that in fact our parameters are (Ci,jik)ie[n+m] je MXM which forms a metually indiscernible array over A, where INXIN is ordered lexi cographically.

So we have

$$tp(a,b/A) \cup \{\forall_i(x,y;c_{i,0},o): i\in[n+m]\}$$

 $\cup \{\neg \forall_i(x,y;c_{i,1,k}): (j,k)\neq (o_{10})\}$
is consistent.
By possiby moving $(c_{i,j,k})_{i\in[n+m]}$ over A,
we may assume this type is realized by
ab. By the (proof of) sub-additivity of
dp-rk, there are m rows which form a
multiply indiscervible array over Aa. Wlog,
these are $i=n+1,...,n+m$. For each je M,
(et dj be a typle enumerative $(e_{i,j,k})_{n=i=n+m}$

The sequence
$$(d_j)_{j \in \mathcal{M}}$$
 is an
A a - indiscernible sequence.
For each $j \in \mathcal{M}$, pick some by with
 $b_j d_j \equiv b d_0$.

over
$$Aab_{0}...,b_{\ell-1}$$
.
• For $1 \le i \le n_1$ the sequence
 $(C_{i|0|k})_{k\in N}$
fails to be indiscernible over
 $ab = ab_0$ Since
 $F((a_1b_0; C_{i,j,k}) \le (j_{1k}) = (0,0).$

hence

• For
$$n < i \le n + m$$
, and for $0 \le j \le l$,
the sequence $(C_{i,j,lk})_{k \in l \setminus l}$
fails to be indiscervible over abj
because
 $F : (a_{i}b_{j}; c_{i,j,lk}) \iff F : (a_{i}b_{j}; c_{i,o,lk})$
 $\iff k = 0$.

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} D_{p}-rank \implies broad \quad implication \\ \end{array}{0pt} \\ \begin{array}{l} Proposition \quad 3.19 \\ \end{array}{0pt} \\ \hline \\ For each \quad i=1,...,n \quad let \; Xi \; be \; a \; definable \\ of \; finite \; dp-rank \; r; \; > 0. \; let \; Y \; \leq \; X_i \times \times \times \\ \end{array}{0pt} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} be \; type \; - \; definable \\ \end{array}{0pt} \\ \end{array}{0pt} \\ \end{array}{0pt} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} f \; dp \; -rank \; (Y) \; = \; r_i + \ldots + r_n \; , \; then \; \; Y \; is \\ \end{array}{0pt} \\ \end{array}{0pt} \\ \end{array}{0pt} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array}{0pt} \\ \begin{array}{l} \begin{array}{l} \end{array}{0pt} \\ \end{array}{0pt} \\$$

Pick
$$(a_{1},...,a_{n}) \in Y$$
 such that
 $dp - rk(a_{1},...,a_{n}/A) = r_{1} + ... + r_{n}$.
Ry the technical lemma, there is a
sequence $(b_{jr})_{j \in NY}$ of pairwise distinct
elements such that
 $(a_{1},...,a_{n-1},b_{j}) = A(a_{1},...,a_{n-1},a_{n})$

and

dp-rk (^{a1,..., and} Ab,..., bj) = r1+...+rn-1
for all je IXI. By induction,
$$tp(a_{1...,a_{n-1}} \land b_{1...,b_{j}})$$
 is broad for all j, hence
 $tp(a_{1,...,a_{n-1}} \land Ab_{1} \land b_{j})$ is broad. Hence
 $tp(a_{1,...,a_{n-1}} \land Ab)$ is broad. Hence
 $tp(a_{1,...,a_{n-1}} \land Ab)$ is broad. Hence

This shows Y is broad.

MM

Rvasi - minimality

Definition

A definable set D is called quasi-minimal if D has finite dp-rank $n \ge 0$, and every definable subset $D' \le D$ has either rank O or n. Equivalently, every infinite definable subset of D has

rank n. Observation 1 : dp-rk 1 => quasiminianal Observation 2 : Every infinite definable set of finite dp-rk has an infinite quari-minimul definable subset.

Main Theorem Assume NIP. let Xu, Xn be grasi-minimal definable sets of vank r,,..,rn respectively. Let Y EX, X-. X Xn be definable. Then Y is broad it and only if dp-rk(Y)=r,+-.+rn. Proof By definition, r; >0 for all it [n]. "if" direction was done above. "only if " will be proven by induction on n. n=1 Juasi-minimale Z Y = X, is broad (Y is inhinter () = r .

Now assume
$$n \ge 1$$
, and let Y be broad.
By the hyperplane lemma, there are infinite
definable sets $D_1 \le X_{1,1-1}$, $D_n \le X_n$ such that
for every $b \in D_n$, the set
 $H_b := \{(\alpha_{1,1,...,n-1}) \in D_1 \times \dots \times D_{n+1} \mid (\alpha_{1,...,n-1}, b) \notin Y\}$
is narrow, as a subset of $X_1 \times \dots \times X_{n-1}$.
By quasi-minimality, $dp - r (D_1) = r_1$, for all
 $i \in [n]$. Define H and Y' by
 $H = (D_1 \times \dots \times D_n) \setminus Y = \coprod_{b \in D_n} H_b$.
 $Y' = (D_1 \times \dots \times D_n) \cap Y$.

$$\begin{array}{c} \chi_{2} \\ P_{2} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5} \\$$

But
$$D_1 \times - \times D_n = H \cup Y'$$
 and
 $dp - rk(D_1 \times - \times D_n) = r_1 + \cdots + r_n$
So $dp - rk(Y') = r_1 + \cdots + r_n$

Petinability in Families
Assure T is NIP and eliminates 2°.
let X1,...,Xn be quasi-minimal definable
sets of finite dp-rank.
let r = dp-re(X1×--×Xn).
Given a definable family EDB bey of
subsets of X1×--×Xn, the set of
b such that dp-re(Db) = r is definable,
and there is some m, even, such that

$$dp-re(Db) = r$$
 if and only if
there are Si $\leq X_i$ with $|S_i| = n$
for ic[n] such that $S_1 \times - \times S_n \leq D_b$.