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Let M be a sufficiently saturated dp-finite field and M be a small
elementary substructure of M.

Aim: Find a definable basis of neighbourhoods of 0 in M inducing
on M a field topology. Then use it to define M-infinitesimals.

Candidates of basic neighbourhood of 0: (Definition 6.3)
X −∞ X := {δ ∈M : X ∩ (X + δ) is heavy}, where X is a
definable heavy subset of M (Definition 4.19).

(In particular such subsets of M will again be heavy. Properties of
these neighbourhoods will be stated in Proposition 6.5. In
particular when M is not of finite Morley rank we will get a
Hausdorff topology. )

(In the dp-minimal case, one chose X to be a infinite, definable
subset of M and
X −∞ X := {y ∈M : ∃∞x1 ∈ X∃x2 ∈ X y = x1 − x2}.)



dp-rank

As in the previous section, we will use the following properties of
the dp-rank (on definable subsets):

1 the dp-rank is subadditive:
dp − rank(ab/A) ≤ dp − rank(a/Ab) + dp − rank(b/A),

2 the dp-rank of a (finite) cartesian product is the sum of the
dp-rank of the factors,

3 the dp-rank of a definable set is 0 iff this set is finite,

4 if f is a definable function and X a definable set, then
dp − rank(X ) ≥ dp − rank(f (X )), and
dp − rank(X ) = dp − rank(f (X )) if the fibers are finite,

5 dp-rank(X ∪ Y ) = max{dp-rank(X),dp-rank(Y)}.
From now on we will denote dp-rank, by simply rk.

Recall also that since M is NIP, Th(M) eliminates ∃∞.



The first goal will be to define heavy sets.
In order to do that we need to define critical sets and to define
critical sets,
we need the notion of coordinate configuration and their targets.

We follow the numbering of DpI.

Note that in a number of results we will only use the additive
group structure on M.



Coordinate configuration

Let X be a definable subset of dp-rank n > 0. Then X is
quasi-minimal if any infinite definable subset of X has dp-rank n.
(Recall that quasi-minimal sets exist (Remarks 3.21 and 3.22).)

A coordinate configuration is a tuple (X1, . . . ,Xn,P), with
Xi ⊂M, 1 ≤ i ≤ n, quasi-minimal,
P a broad definable subset of X1 × . . .× Xn and
the map π : P 7→M : (x1, . . . , xn) 7→ x1 + . . .+ xn has finite fibers.

Recall that P broad means that there are (aij) ∈ Xi , 1 ≤ i ≤ n,
j ∈ N, such that aij , j ∈ N, are pairwise distinct for fixed i and for
any function η : {1, . . . , n} → N, (a1η(1), . . . , anη(n)) ∈ P
(Definition 3.1).
(This was defined for type-definable sets).



Targets

Let (X1, . . . ,Xn,P) be a coordinate configuration.
By Theorem 3.23, P is broad iff rk(P) =

∑n
i=1 rk(Xi ).

Since π has finite fibers, we have rk(P) = rk(π(P))(≤ rk(M)).

The target of (X1, . . . ,Xn,P) is the image of π where
π : P →M : (x1, . . . , xn) 7→ x1 + . . .+ xn and its rank is

n∑
i=1

rk(Xi ).

Example: Letting X be a quasi-minimal subset of M, then (X ,X )
is a coordinate configuration with target X .



Critical rank and critical sets

Let (X1, . . . ,Xn,P) be a coordinate configuration and let
π : P →M : (x1, . . . , xn) 7→ x1 + . . .+ xn

The critical rank is the maximum rank of any coordinate
configuration (in any power of M).
(Note that this rank is always smaller than the rank of M.)

A set Y is critical if it is the target of any coordinate configuration
of critical rank.
Note that there are critical subsets of M and since M is infinite,
the critical rank is always > 0.



Proposition (Proposition 4.3(1))

Let (X1, . . . ,Xn,P) be a configuration with target Y and
π : P →M : (x1, . . . , xn) 7→ x1 + . . .+ xn.
Let {Db} be a definable family of definable subsets of Y , then
{b : rk(Db) = rk(Y )} is definable.

Proof.

Recall that r =
∑

i rk(Xi ) = rk(Y )
The fibers of π are finite by assumption and for Db ⊂ Y , we have
that rk(π−1(Db)) = rk(Db).
By Corollary 3.24 (there, the subsets were in X1 × . . .× Xn),
{b : rk(π−1(Db)) = r} is definable.



Some properties of critical sets

Let ρ be the critical rank. Let Y be the target of (X1, . . . ,Xn,P).

1 If Y is a critical set (of rank ρ) and if Y ′ ⊂ Y with
rk(Y ′) = ρ, then Y ′ is critical.
We note that (X1, . . . ,Xn, π

−1(Y ′)) is a coordinate
configuration for Y ′. Indeed since the fibers of π are finite,
rk(Y ′) = rk(π−1(Y ′)) = ρ. So π−1(Y ′) is broad by Theorem
3.23.

2 If Y is critical and α ∈M, then α + Y is also critical.
We consider the configuration (X1 + α,X2, . . . ,Xn,P

′), where
P ′ := {(a1 + α, a2, . . . , an) : (a1, . . . , an) ∈ P}. The map
x 7→ α + x is a definable bijection, so rk(X1) = rk(X1 + α)
and X1 + α is still quasi-minimal. Since P is broad,
rk(P) =

∑n
i=1 rk(Xi ) = rk(X1 + α) +

∑n
i=2 rk(Xi ). We have

rk(Y ) = rk(Y + α) = rk(P ′), so P ′ is still broad.
So α + Y is the target of the configuration
(X1 + α,X2, . . . ,Xn,P

′), of critical rank.



Heavy sets

Let Y be a critical set. Then X is Y -heavy if there is δ ∈M such
that rk(Y ∩ (X + δ)) =rk(Y ).
In other words, some translate of X has a ”big” intersection with
Y .

A set X is heavy if it is Y -heavy for every/any critical set Y ⊂ M
(see Proposition below).
In particular, X is heavy iff some translate of X contains a critical
set.
M is heavy since it contains a critical set.

A set is light if it is not heavy.

Proposition (Proposition 4.18)

Let Y ,Y ′ be two critical sets and let X be a definable subset of
M. Then X is Y -heavy iff X is Y ′-heavy.



The proof of that proposition will use a series of auxiliary results.
Denote [n] := {1, . . . , n}.

Lemma (Lemma 4.4)

Let X1, . . . ,Xn be A-definable and quasi-minimal. Let
ā := (a1, . . . , an) ∈ X1 × . . .× Xn such that tp(ā/A) is broad. Set
s = a1 + . . .+ an. If ā ∈ acl(sA), then there is a broad set
P ⊂ X1 × . . .× Xn with ā ∈ P and (X1, . . . ,Xn,P) is a coordinate
configuration with s ∈ π(P).

Proof.

Recall that tp(ā/A) is broad if the following holds:
∧

m∈N

∃a1,1 . . . an,m(
∧

i∈[n],1≤j≤j ′≤m

ai ,j 6= ai ,j ′ ∧

∧
η:[n]→[m]

(a1,η(1), . . . , anη(n))≡A
(a1, . . . , an)).



Since ā ∈ acl(sA), there is an A-formula ϕ(x̄ , y) such that ϕ(ā, s)
holds and ϕ(M, s) has cardinality k ∈ N. Furthermore we may
assume that for all y |ϕ(M, y)| ≤ k and that it contains the
subformula y =

∑n
i=1 xi . Define

P := {x̄ ∈ X1 × . . .× Xn : ϕ(x̄ ,
n∑

i=1

xi )}.

Since P contains ā, it is broad
and the map π : P →M : x̄ 7→

∑n
i=1 xi has fibers of size ≤ k .

So (X1, . . . ,Xn,P) is a coordinate configuration.



Lemma (Lemma 4.5)

Let X1, . . . ,Xn be A-definable and quasi-minimal. Let pi be a
global A-invariant type in Xi , 1 ≤ i ≤ n. Assume that pi is not
realized. Then the type p1 ⊗ . . .⊗ pn � A is broad.

Proof.

Since pi is A-invariant, we may define p⊗ωi (⊗ is associative). Note
that p⊗ωi again A-invariant) and a realization is an A-indiscernible
sequence. Since pi is non algebraic the elements of that sequence
are pairwise distinct. Then take (ai ,j)i∈[n],j∈N be a realization of

p⊗ω1 ⊗ . . .⊗ p⊗ωn over A.

Then the tuple (a1,η(1), . . . , an,η(n)) is a realization of p1 ⊗ . . .⊗ pn
over A and the rows of the array (ai ,j)i∈[n],j∈N is composed of
distinct elements. So, p1 ⊗ . . .⊗ pn is broad over A.

For reference for products of A-invariant types, see [P. Simon, A
guide to NIP theories, 2.2.1].



Lemma (Lemma 4.6)

Let (X1, . . . ,Xn,P) be a coordinate configuration. Then there
exist a small model M and non-algebraic global M-invariant types
pi on Xi such that if ā |= p1 ⊗ . . .⊗ pn � M, then ā ∈ P.

Proof.

First we use Theorem 3.10 to find Di ⊂ Xi , 1 ≤ i ≤ n, infinite
definable sets such that for every b ∈ Dn

{(u1, . . . , un−1) ∈ D1 × . . .× Dn−1 : (u1, . . . , un−1, b) /∈ P}

is not a broad subset of X1 × . . .× Xn−1.

Then choose a model M over which everything is defined and let
pi be an M-invariant global type in Di , 1 ≤ i ≤ n. (One may
proceed as follows. Extend Di ∩M to an ultrafilter U on M. Then
let pi ,U := {ψ(x̄ , b̄) : b̄ ∈M, ψ(M, b̄) ∈ U}).



Proof continued.

Let ā := (a1, . . . , an) be a realization of p1 ⊗ . . .⊗ pn � M. We
apply the preceding lemma (Di is also quasi-minimal), so
p1 ⊗ . . .⊗ pn � M is broad.

Suppose that ā /∈ P.
By choice of D1, . . . ,Dn, for any b ∈ Dn,
{(u1, . . . , un−1) ∈ D1 × . . .×Dn−1 : (u1, . . . , un−1, b) /∈ P} is not a
broad subset of X1 × . . .× Xn−1.
Since tp(a1, . . . , an−1) is broad, we get that ā ∈ P.



Lemma (Lemma 4.10)

Let (X1, . . . ,Xn,P) be a critical coordinate configuration and Q a
quasi-minimal set. Let A be a small set of parameters over which
the Xi , 1 ≤ i ≤ n and P,Q are defined.
Let (a1, . . . , an, b) ∈ X1 × . . .× Xn × Q such that
tp(a1, . . . , an, b/A) is broad and (a1, . . . , an) ∈ P.
Let s = a1 + . . .+ an + b. Then b /∈ acl(A, s).

Proof.

By the way of contradiction suppose that b ∈ acl(As). Then by
Lemma 4.4, there is a broad subset P̃ of X1 × . . .× Xn × Q with
(a1, . . . , an, b) ∈ P̃ and (X1, . . . ,Xn,Q, P̃) is a coordinate
configuration with s ∈ π(P̃). This contradicts that (X1, . . . ,Xn,P)
be a critical coordinate configuration (since rk(Q) > 0).



A technical result on products of types

Lemma (Lemma 4.11)

Let A be small set and p a global A-invariant type. Let b /∈ acl(A)
and a |= p � Ab. Then there is a small model A ⊂M and a global
M-invariant type r such that (a, b) |= p ⊗ r � M, namely
b |= r � M and a |= p � Mb.

Proof.

Let b1, b2, . . . be an A-indiscernible sequence of pairwise distinct
elements realizing tp(b/A). Let M0 be a small model containing A.
Let b′1, b

′
2, . . . an M0-indiscernible sequence extracted from the first

sequence. In particular b′i realizes tp(b/A) and these elements are
still pairwise distinct.

Let σ ∈ Aut(M/A) sending b′1 to b and let M1 = σ(M0).



Continued.

Note that A ⊂ M1. The sequence σ(b′1), σ(b′2), . . . , is a
M1-indiscernible sequence and consists of distinct elements. In
particular, b /∈ acl(M1). Let r0 be a type over M, coheir of
tp(b/M1).

(Again extend {ϕ(M1, c̄) : ϕ(x , c̄) ∈ tp(b/M1)} to an ultrafilter U
on M

|x |
1 }, then ψ(x , d̄) ∈ r0 iff ψ(M1, d̄) ∈ U , d̄ ∈M.)



Continued.

Since b /∈ acl(M1), r0 has infinitely many realizations. Let a′ be a
realization of p � M1b. Thus (a′, b) realizes p ⊗ r0 � M1. By
hypothesis, a realizes p � Ab and so does a′. So there is an
automorphism τ ∈ Aut(M/Ab) such that τ(a′) = a. Let
M := τ(M1) and r = τ(r0). Then (a, b) realizes p ⊗ r � M since
(a′, b) realizes p ⊗ r0 � M1.



Lemma (Lemma 4.12)

Let Y be a critical set of rank ρ and Q be quasi-minimal and let
t ≥ 1 an integer. There exist pairwise distinct q1, . . . , qt ∈ Q such
that

rk(
t⋂

i=1

(Y + qi )) = ρ.

Note that the lemma implies that
⋂t

i=1(Y + qi ) is critical. (Indeed
a translate of a critical set is critical and if a subset of a critical set
has the same rank then it is also critical.)

Proof (by contradiction):

So for any distinct q1, . . . , qt ∈ Q, rk(
⋂t

i=1(Y + qi )) ≤ ρ− 1 (1).
Let (X1, . . . ,Xn,P) be a critical configuration with target Y . By
3.23, ρ =

∑n
i=1 rk(Xi ). By 4.6, there exist a small model M and

non-algebraic global M-invariant types pi on Xi such that if
a |= p1 ⊗ . . .⊗ pn � M, then a ∈ P. Furthermore we may assume
that Q is defined over M and that there is a non-algebraic
M-invariant type p0 containing Q.



Claim (4.13)

For k ∈ N∗, let
Ωk := {(a1,1, . . . , a1,n, . . . , ak,1, . . . , ak,n, q0) ∈ (X1× . . .×Xn)k×Q
such that

1 for each i ∈ [k], (ai ,1, . . . , ai ,n) ∈ P,

2 there are infinitely many q ∈ Q such that∧k
i=1

(
(q0 +

∑n
j=1 ai ,j) ∈ Y + q

)
.

Then for k >> 0, Ωk is not a broad subset of (X1× . . .×Xn)k ×Q.

Note that since ∃∞ is eliminated, the sets Ωk are definable.

Proof of Claim (by contradiction).

Let h := rk(Q) > 0. Choose k large enough such that
t.h + k(ρ− 1) < h + k .ρ, equivalently h.(t − 1) < k . By 3.23, if
Ωk were broad, rk(Ωk) = h + k .ρ. In particular Ωk would contain
a tuple of that rank (over M) (2). Let
(a1,1, . . . , a1,n, . . . , ak,1, . . . , ak,n, q0) be such tuple. For i ∈ [k], let
si :=

∑n
j=1 ai ,j . By definition of Ωk , (ai ,1, . . . , ai ,n) ∈ P. So

si ∈ Y (= π(P)).



Proof continued.

Since the fibers of π are finite, (ai ,1, . . . , ai ,n) ∈ acl(siM). Again
by definition of Ωk , there are infinitely many q ∈ Q such that
{q0 + s1, . . . , q0 + sk} ∈ Y + q. So we may choose q1, . . . , qt−1
pairwise distinct and not equal to q0 such that
q0 + si ∈

⋂t−1
`=1 Y + q`, i ∈ [k] (and so q0 + si ∈

⋂t−1
`=0 Y + q`). We

have rk(si/Mq0, . . . , qt−1) = rk((ai ,1, . . . , ai ,n)/Mq0, . . . , qt−1) ≤
rk(
⋂t−1
`=0 Y + q`) < ρ (by (1)). By subadditivity of dp-rank,

rk((a1,1, . . . , a1,n, . . . , ak,1, . . . , ak,n, q0, q1, . . . , qt−1)/M)

≤ k(ρ− 1) + t.h,

contradicting (2) (recall that k has been chosen such that
k(ρ− 1) + t.h < kρ+ h).

End of proof of the claim.



Fix k such that h.(t − 1) < k and so Ωk is not broad. Choose
(a1,1, . . . , a1,n, . . . , ak,1, . . . , ak,n, q0) realizing
(p1 ⊗ . . .⊗ pn)⊗k ⊗ p0 over M. Let si :=

∑n
j=1 ai ,j , i ∈ [k]. Recall

that each āi := (ai ,1, . . . , ai ,n) ∈ P and so si ∈ Y . By Lemma 4.5,
tp(āi , q0)/M) is broad and so (āi , q0) /∈ Ωk . So there are only
finitely many q ∈ Q such that

∧k
i=1

(
q0 + si ∈ Y + q

)
. Since

si ∈ Y , q0 is among these q’s, which implies that
q0 ∈ acl(M, s1 + q0, . . . , sk + q0). Choose ` minimal such that
q0 ∈ acl(M, s1 + q0, . . . , s` + q0). Note that ` ≥ 1, since
tp(q0/M) = p0 is non-algebraic. Let
M ′ := M ∪ {s1 + q0, . . . , s`−1 + q0}. By choice of `, q0 /∈ acl(M ′);
also note that M ′q0 ⊂ dcl(M, q0, (ai ,j)1≤i≤n,1≤j≤`−1).



We are in position to apply Lemma 4.11. Indeed, q0 /∈ acl(M ′), ā`
realizes the M-invariant type p1 ⊗ . . .⊗ pn over M ′q0. So we can
find N a small model containing M ′ and a N-invariant type r such
that ā`q0 realizes p1 ⊗ . . .⊗ pn ⊗ r � N, namely q0 realizes r � N
(in particular r contains Q) and ā` realizes p1 ⊗ . . .⊗ pn � Nq0. By
Lemma 4.5, tp(ā`, q0/N) is broad. Recall that (X1, . . . ,Xn,P) was
a critical coordinate configuration ā` ∈ P, Q a quasi-minimal set,
(ā`, q0) ∈ X1 × . . . ,Xn × Q, with a broad type over N (over which
everything is defined). So by Lemma 4.10, q0 /∈ acl(s` + q0N).
However ` was chosen such that
q0 ∈ acl(M, s1 + q0, . . . , s` + q0) ⊂ acl(M ′, s` + q0), a
contradiction.


